

Technical
interface description

Version 1.2.2 - 04.04.2024

 2

Table of contents

1 Introduction ..7

1.1 Abstract ...7

1.2 Structure of the document ...8

1.3 Referenced documents..8

1.3.1 General ..8

1.3.2 DATEX II v2..9

1.3.3 DATEX II v3... 10

1.4 List of abbreviations .. 10

2 Components of the Mobilithek at a glance.. 12

3 Data exchange formats.. 13

3.1 DATEX II .. 14

3.2 Container format.. 14

3.3 Other data formats .. 15

4 Interfaces of the broker system of the Mobilithek ... 16

4.1 Encryption of communication .. 18

4.2 Compression ... 18

4.3 Support of "Delta" data packets ... 18

4.4 Validity period of data packets ... 19

4.5 Promise of immutability... 19

4.5.1 DATEX II v2... 20

4.5.2 DATEX II v3... 21

4.6 Use of the interfaces ... 24

4.6.1 Data provider side.. 24

4.6.2 Data recipient side ... 25

4.7 Error handling ... 25

4.7.1 Client pull from data provider .. 25

4.7.2 Publisher Push.. 25

4.8 Use of the "If-Modified-Since" header field in the HTTPS protocol 25

4.8.1 Data provider .. 26

4.8.2 Data recipient ... 26

4.8.3 Unchanged data ... 26

5 Data format-independent interfaces .. 27

5.1 Deleting the publication content ... 27

6 DATEX II v2 .. 28

 3

6.1 SOAP interface ... 28

6.1.1 Data provider side.. 28

6.1.2 Data recipient side ... 31

6.2 HTTPS interface ... 34

6.2.1 Data provider side.. 34

6.2.2 Data recipient side ... 35

6.3 OCIT-C interface ... 38

6.3.1 Scope of functions ... 38

6.3.2 Data provider side - Publisher Push OCIT-C .. 39

6.3.3 Data receiver side - Client Pull OCIT-C ... 43

7 DATEX II v3 .. 50

7.1 Notes on handling schemas with Exchange 2020 .. 51

7.1.1 DATEX II v3 Level A or B ... 51

7.1.2 DATEX II v3 Level C .. 51

7.2 SOAP interface ... 53

7.2.1 Data provider side.. 53

7.2.2 Data recipient side ... 59

7.3 HTTPS interface ... 63

7.3.1 Data provider side.. 63

7.3.2 Data recipient side ... 67

8 Container... 69

8.1 SOAP interface ... 69

8.1.1 Data provider side.. 69

8.1.2 Data recipient side ... 72

8.2 HTTPS interface ... 75

8.2.1 Data provider side.. 75

8.2.2 Data recipient side ... 77

9 Other data formats ... 80

9.1 Data provider side.. 80

9.1.1 Client Pull HTTPS .. 80

9.1.2 Publisher Push HTTPS.. 81

9.2 Data recipient side ... 82

9.2.1 Client Pull HTTPS .. 82

9.2.2 Publisher Push HTTPS.. 83

10 Certificate-based M2M communication... 85

10.1 Tasks of the security component ... 85

 4

10.2 Request machine certificate .. 86

10.3 Install machine certificate and exhibitor certificate .. 86

10.4 Authentication of the Mobilithek as a web client .. 87

10.5 Authentication of data provider/data recipient web clients ... 87

11 Appendix A - prepare p12 file for Apache server configuration .. 88

12 Appendix B - DATEX II HTTP Protocol Support.. 93

13 Appendix C - Change notice... 96

 5

List of tables

Table 1: Referenced documents (comprehensive) ... 9

Table 2: Referenced documents (DATEX II v2) ... 9

Table 3: Referenced documents (DATEX II v3) ... 10

Table 4: List of abbreviations ... 11

Table 5: Overview of the components of the Mobilithek.. 12

Table 6: Overview of the interfaces of the broker system of the Mobilithek 17

Table 7: Operating modes of r Mobilithek ... 24

Table 8: Request/response between Mobilithek/data provider system when deleting the publication
content .. 27

Table 9: Error codes for DATEX II V2 - Publisher Push SOAP ... 31

Table 10: Error codes for data receiver DATEX II V2 Pull SOAP .. 32

Table 11: Request/Response between Provider System/Mobilithek during Publisher Push DatexIIv2
HTTPS ... 35

Table 12: Request/Response between Mobilithek/Data Recipient System with Client Pull HTTPS .. 37

Table 13: Error codes for OCIT-C Publisher Push ... 42

Table 14: Error codes for OCIT-C data receiver pull .. 49

Table 15: Error Codes for DATEX2 V3 Publisher Push SOAP .. 58

Table 16: Error codes for data receiver DATEX II V3 Pull SOAP .. 61

Table 17: Request/Response between Provider System/Mobilithek during Publisher Push DatexIIv3
HTTPS ... 66

Table 18 : Request/Response between Mobilithek/Data Recipient System on Client Pull HTTPS 68

Table 19: Error codes for SOAP Container Publisher Push ... 71

Table 20: Error codes for SOAP Container Consumer Pull.. 73

Table 21 : Request/Response between Data Provider System/Mobile Library at Publisher Push
HTTPS ... 77

Table 22 : Request/Response between Mobilithek/Data Recipient System at Client Pull HTTPS 78

Table 23 : Request/response between broker system of the mobile library/data receiver system at
the publisher Push HTTPS... 79

Table 24: Request/response between data provider system/mobile library with client pull HTTPS .. 81

Table 25: Request/response between data provider system/mobile library at publisher push HTTPS
 ... 82

Table 26: Request/Response between Mobilithek/Data Recipient System on Client Pull HTTPS 83

Table 27: Request/response between broker system of the Mobilithek/data receiver system at the
publisher Push HTTPS .. 84

 6

List of figures

Figure 1: Components of the Mobilithek ... 12

Figure 2: Overview container format... 15

Figure 3: Interfaces between data provider, broker system and data recipient............................... 16

Figure 4: Overview of the security architecture... 86

Figure 5: File <collectfile.pem> .. 89

Figure 6: File <collectionfile.pem> .. 91

 7

1 Introduction

1.1 Abstract

The Mobilithek aims to support the exchange of data between data providers and data users with the

help of interfaces and at the same time represents a central portal with the collected information on

available online traffic data of individual data providers. In this way, the Mobilithek enables its users to

offer, find and subscribe to traffic-relevant online data without the need for a lengthy search for the

relevant data and time-consuming technical and organisational bilateral coordination between data

users and data providers. The data exchange is handled via standardized interfaces. As a result, business

processes are to be simplified for all parties involved and the potential of existing data sources is to be

tapped.

This interface description is intended for potential data providers and data recipients. Knowledge in

the implementation and operation of SOAP web services or [SOAP] or HTTPS client/server

architectures are required to use the interfaces of the Mobilithek.

Data transmission between the Mobilithek and the data provider or data recipient systems can be

carried out either via SOAP-based web services or simple HTTPS GET/POST requests. In addition,

transmission via OCIT-C protocol is offered.

 8

1.2 Structure of the document

The document is divided into the following chapters:

▪ Chapter 1 contains a brief overview, the referenced documents and the list of abbreviations.

▪ In the chapter 2 the components of the Mobilithek are presented.

▪ Chapter 3 deals with the available data formats.

▪ The interfaces of the Mobilithek for M2M communication are described in chapter 4 chapter.

▪ Chapter 5 describes interfaces that are independent of the data format.

▪ Chapter 6 describes the DATEX II v2 format in detail.

▪ Chapter 7 describes DATEX II v3 accordingly.

▪ Chapter 8 describes the container format of the Mobilithek.

▪ Chapter 9 describes the handling of other data formats.

▪ Chapter 10 describes the measures used to secure M2M communication.

1.3 Referenced documents

1.3.1 General

[Source] Publisher

[FAQ]
"Frequently asked questions"

https://mobilithek.info/help/FAQ

[GZIP]
RFC 1952 (May 1996)
GZIP File Format Specification Version 4.3,
https://tools.ietf.org/rfc/rfc1952.txt

[HTTP/1.1]
RFC 2616 (June 1999)
Hypertext Transfer Protocol -- HTTP/1.1
https://www.ietf.org/rfc/rfc2616.txt

[HTTPS]
RFC 2818 (May 2000)
HTTP over TLS
https://www.ietf.org/rfc/rfc2818.txt

[MCS]

Container format specification

In the download area (https://mobilithek.info/help/download) in the category
Documentation; see Container Specification V1.1 - 02|2014

[OCIT-C]

OCIT-C Specification
Version 1.1_R1 from 30.10.2014

https://www.ocit.org/media/ocit-c_protokoll_v1.1_r1.pdf

In the download area (https://mobilithek.info/help/download) in the category WSDL; see
Mobilithek: OCIT-C WSDL

https://mobilithek.info/help/FAQ
https://tools.ietf.org/rfc/rfc1952.txt
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2818.txt
https://mobilithek.info/help/download
https://www.ocit.org/media/ocit-c_protokoll_v1.1_r1.pdf
https://mobilithek.info/help/download

 9

[Source] Publisher

[PKI]
RFC 2459 (January 1999)
Internet X.509 Public Key Infrastructure Certificate and CRL Profile
https://www.ietf.org/rfc/rfc2459.txt

[SOAP]
SOAP Version 1.2
https://www.w3.org/TR/soap12-part1/

[URL]
RFC 1738 (December 1994)
Uniform Resource Locators (URL)
https://www.ietf.org/rfc/rfc1738.txt

[X.509v3]

ITU-T Recommendation X.509 (1997 E):
Information Technology - Open Systems Interconnection -
The Directory: Authentication Framework, June 1997.
https://www.itu.int/rec/T-REC-X.509-199708-S/en

Table 1: Referenced documents (comprehensive)

1.3.2 DATEX II v2

[Source] Publisher

[DATEXIIv2PSM]
DATEX II v2.0 Exchange Platform Specific Model

https://docs.datex2.eu/_static/data/v2.0/DATEXII_-_ExchangePSM_0.pdf

[DATEXIIv2Pull]

DATEX II v2.0 Pull wsdl

In the download area (https://mobilithek.info/help/download) in the category
WSDL; see Mobilithek - Pull: DATEXII v2

[DATEXIIv2Push]

DATEX II v2.0 Push wsdl

In the download area (https://mobilithek.info/help/download) in the category
WSDL; see Mobilithek - Push: DATEXII v2

[DATEXIIv2Schema]
DATEX II XML Schema 2.3

https://docs.datex2.eu/_static/data/v2.3/DATEXIISchema_2_2_3_0.zip

[DATEXIIv2SDG]
DATEX II v2.3 Software Developers Guide:

https://docs.datex2.eu/_static/data/v2.3/DATEXII-DevGuide.pdf

[DATEXIIv2Spec]
Includes the following documents, which are available for download on
https://www.datex2.eu for all registered users:
[DATEXIIv2PSM], [DATEXIIv2UG]

[DATEXIIv2UG]
DATEX II v2.0 User Guide:

https://docs.datex2.eu/_static/data/v2.3/DATEXII-UserGuide.pdf

Table 2: Referenced documents (DATEX II v2)

https://www.ietf.org/rfc/rfc2459.txt
https://www.w3.org/TR/soap12-part1/
https://www.ietf.org/rfc/rfc1738.txt
https://www.itu.int/rec/T-REC-X.509-199708-S/en
https://docs.datex2.eu/_static/data/v2.0/DATEXII_-_ExchangePSM_0.pdf
https://mobilithek.info/help/download
https://mobilithek.info/help/download
https://docs.datex2.eu/_static/data/v2.3/DATEXIISchema_2_2_3_0.zip
https://docs.datex2.eu/_static/data/v2.3/DATEXII-DevGuide.pdf
https://www.datex2.eu/
https://docs.datex2.eu/_static/data/v2.3/DATEXII-UserGuide.pdf

 10

1.3.3 DATEX II v3

[Source] Publisher

[DATEXIIv3Annex]
Annexes to Platform Specific Model:

https://docs.datex2.eu/exchange/2020/psm/annexes.html

[DATEXIIv3Pull]

DATEX II v3.0 Snapshot Pull wsdl

In the download area (https://mobilithek.info/help/download) in the
category WSDL; see Mobilithek - Pull: DATEXII v3

[DATEXIIv3Push]

DATEX II v3.0 Snapshot Push wsdl

In the download area (https://mobilithek.info/help/download) in the
category WSDL; see Mobilithek - Push: DATEXII v3

[DATEXIIv3Exc]

Download for Level A and Level B publications:

In the download area (https://mobilithek.info/help/download) in the
category DATEXII V3

Download for Level C publications:

In the download area (https://mobilithek.info/help/download) in the
category DATEXII V3

[DATEXIIv3ExcUG]
Exchange 2020 User Guide:

https://docs.datex2.eu/exchange/2020/userguide/

[DATEXIIv3Spec]

Includes the following documents, which are available for download
on https://www.datex2.eu or on the Mobilithek:

[DATEXIIv3ExcUG], [DATEXIIv3Annex], [DATEXIIv3Pull],
[DATEXIIv3Push], [DATEXIIv3Exc]

Table 3: Referenced documents (DATEX II v3)

1.4 List of abbreviations

Abbreviation Resolution

BASt Federal Highway Research Institute

GMT Greenwich Mean Time

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ID Identifier

M2M Machine-to-Machine

MDM Mobility data marketplace

MDV Metadata directory

OCIT Open Communication Interface for Road Traffic Control Systems

PKI Public Key Infrastructure

https://docs.datex2.eu/exchange/2020/psm/annexes.html
https://mobilithek.info/help/download
https://mobilithek.info/help/download
https://mobilithek.info/help/download
https://mobilithek.info/help/download
https://docs.datex2.eu/exchange/2020/userguide/
https://www.datex2.eu/

 11

Abbreviation Resolution

PSM Platform Specific Model

RFC Request for Comments

SDG Software Developers Guide

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

TLS Transport Layer Security

URL Uniform Resource Locator

UTF UCS Transformation Format

WSDL Web Services Description Language

XML Extensible Markup Language

XSD XML Schema Definition

Table 4: List of abbreviations

 12

2 Components of the Mobilithek at a glance
The Mobilithek is made up of four components, each of which performs different tasks.

Figure 1: Components of the Mobilithek

Component Description

Security component The security component can be used to authenticate the data recipient
system/data provider system or data recipient/data provider in order to be able
to use services.

Metadata directory The metadata directory is used to manage all information regarding the
publications provided in the Mobilithek.

Broker system The broker system handles the actual processing of the data packets and is
therefore the focus of this interface description.

Administration The administration is realised by means of a web-based user interface (GUI), see
[FAQ].

Table 5: Overview of the components of the Mobilithek

The Mobilithek supports the following communication and application scenarios:

▪ Interested parties, data recipients and data providers can communicate with the metadata

directory via the web GUI in order to make use of services such as searching or registering. In

order to be able to view or change certain contents of the metadata directory, authentication

must first be carried out at the Mobilithek Security component.

▪ After authentication via the security component, the data receiver system and data provider

system can establish M2M communication with the broker system in order to deliver or request

data.

 13

3 Data exchange formats
In order to be able to exchange mobility data between broker system and data provider and data

recipient system, the following data formats are specified:

▪ The Mobilithek supports the XML- or JSON-based DATEX II format through native interfaces

to enable the platform to be used by standards-compliant DATEX II implementations at data

providers or data recipients.

▪ In order to achieve the greatest possible compatibility with the MDM, the container format

introduced with the MDM and independent of concrete formats continues to be supported.

Any XML and binary data can be transmitted via this format.

▪ Furthermore, the HTTPS interface can in principle be used to transmit any "payloads" in the

HTTP body without the need to package them in the container format beforehand.

When a data package is delivered to the broker interface of the Mobilithek, the validity of the data is

checked for conformity with a stored file schema. A check for malware is also performed. The

Mobilithek system administrator can disable these checks for individual publications.

The Mobilithek web GUI allows you to download the data package currently stored in the Mobilithek

via a button.

If a validation of the data package is carried out, the file data is obtained via the URL stored in the

publication description.

For publications in DATEX II format, it is the responsibility of the data provider to deposit the correct

file schemas. For publications in container format, the standard schema is already made available under

a generally valid URL. For data packages in XML format, the schema is to be referenced via the URL in

the "schemaLocation" attribute to enable data recipients to automatically validate the packages with

the same prerequisites. For data packages in JSON format, the schema is referenced in the $schema

attribute. If this includes additional subschemas, these must be specified via the $ref attribute. The

referenced subschemas must always referenced with their full name inclusive their file type suffix:

"$ref": "<subschema filename>". It is recommended to data providers to reference the schemas which

are stored for the publication in Mobilithek, and to use those schemas for their own validations. The

schema URLs can be obtained from the Mobilithek GUI in the publication detail screen. The benefit

following that approach is that all parties of the data exchange (data provider, Mobilithek and data

consumer) are using the same schemas for validation.

The Mobilithek accepts a data package regardless of its validity or the result of the check for malware

and also delivers it to the data recipients if it is not valid in relation to the stored schemas or if there is

a suspicion that it contains malware.

 14

3.1 DATEX II

DATEX II is a pan-European standard for the exchange of mobility data. Basic knowledge of the DATEX

II specification is assumed for this chapter [DATEXIIv2Spec] resp. [DATEXIIv3Spec]. The Mobilithek

supports both DATEX II v2 and v3.

DATEX II defines XML structures for the exchange of mobility data. For DATEX II V3, JSON is

supported as an exchange format in addition to XML. The underlying schema files can be obtained from

the DATEX II website https://www.datex2.eu/. The user data are to be defined based on this schema.

DATEX II not only specifies a standard for the structure of the user data, but also regulates the

exchange process; this is described in more detail in chapter 4 is described in more detail.

The documents on which DATEX II is based are listed in chapter 1.3 “Referenced documents” as

[DATEXIIv2Spec] resp. [DATEXIIv3Spec]. The structure of the DATEX II user data is not relevant for

the mobile library, as it forwards the data unchanged and does not evaluate them.

DATEX II not only provides for sending complete data packages, but also for sending changes to

previous versions. The Mobilithek basically supports the processing of "delta" submissions (see chapter

4.3). With regard to DATEX II, this option is currently only supported for v3 using XML. For DATEX II

v2 and DATEX II v3 (JSON), the data provider system must always provide complete data packets that

are forwarded unchanged by the Mobilithek.

3.2 Container format

In addition to the DATEX II standard mentioned in the previous chapter, the Mobilithek will continue

to support the "container format" introduced with the MDM. This format is based on XML for the

transmission of data. It was created specifically for data exchange via the MDM and will continue to be

supported by the Mobilithek. The schema of the data format can be found in the container format

specification [MCS]. In addition to the actual user data, which is contained in a body element, the data

format allows further structural information to be transmitted in a header element, which is used in

particular to control the communication process.

https://www.datex2.eu/

 15

Figure 2: Overview container format

To keep the model flexible, the format and content of the body element are not specified. This means

that not only data in XML format can be transported in the container, but also binary data.

3.3 Other data formats

Since Mobilithek passes on the transmitted "payload" unchanged and does not carry out any content

checks or evaluations, it is also possible to transmit any data formats via the HTTP/REST interface of

Mobilithek in the HTTP body. The payload contained in the HTTP body is passed on unchanged to the

data recipient.

 16

4 Interfaces of the broker system of the
Mobilithek

The broker system of the Mobilithek assumes the role of the client or the role of the server as an

intermediary between the data provider system and the data recipient system, depending on the

situation:

The broker system can request data from the data provider as a client or the data provider can send

the data to the broker system by itself.

The data recipient can in turn request data from the broker system as a client or the broker system can

send the data to the data recipient on its own.

Figure 3 shows the possible paths available for data packet transmission between the data provider

and the broker system on the one hand and the broker system and the data recipient on the other.

Figure 3: Interfaces between data provider, broker system and data recipient

The data packets received or sent by the broker system must be in DATEX II, container format or "any"

payload.

HTTPS and SOAP via HTTPS are supported as transmission protocols for the respective formats. For

the DATEX II format, the OCIT-C protocol is also supported.

Table 6 shows which communication channels are supported. For each data format (DATEX II /

Container), communication pattern (Client Pull / Publisher Push) and protocol (HTTPS, SOAP, OCIT-

C), if supported, the chapter is noted in which the corresponding communication path is described -

differentiated according to data provider and data recipient systems.

In addition, it is indicated in each case whether the data provider or data recipient system acts as a

client or as a server vis-à-vis the Mobilithek. Client means here that the system makes requests to the

Mobilithek or actively establishes a connection to it.

Client

pull

Publisher

push

Publisher

push

Client

pull

D
at

a
p

ro
vi

d
er

B
ro

ke
r

sy
st

em

D
at

a
re

ci
p

ie
n

t

 17

Server, on the other hand, means that the system is addressed by the Mobilithek and must answer its

requests. In this case, network access to the system to be connected must be permitted from the

outside (by the Mobilithek).

 Data provider system Data receiver system

SOAP/
HTTPS

HTTPS OCIT/
SOAP/
HTTPS

SOAP/
HTTPS

HTTPS OCIT/
SOAP/
HTTPS

D
A

T
E

X
 I

I
v2

Client Pull 6.1.1.1

Server

6.2.1.1

Server

- 6.1.2.1

Client

6.2.2.1

Client

6.3.3

Client

Publisher Push 6.1.1.2

Client

- 6.3.2

Client

6.1.2.2

Server

- -

D
A

T
E

X
 I

I
v3

Client Pull 7.2.1.1

Server

7.3.1.1

Server

- 7.2.2.1

Client

7.3.2.1

Client

-

Publisher Push 7.2.1.2

Client

- - 7.2.2.2

Server

- -

C
o

n
ta

in
er

Client Pull 8.1.1.1

Server

8.2.1.1

Server

- 8.1.2.1

Client

8.2.2.1

Client

-

Publisher Push 8.1.1.2

Client

8.2.1.2

Client

- 8.1.2.2

Server

8.2.2.2

Server

-

O
th

er

Client Pull - 9.1.1

Server

- - 9.2.1

Client

-

Publisher Push - 9.1.2

Client

- - 9.2.2

Server

-

Table 6: Overview of the interfaces of the broker system of the Mobilithek

In principle, data packages are only available for collection by data recipients during the validity period

stored in the publication definition.

As long as no new data package is delivered, the data receiver system receives an error message of the

type "No Content", which varies depending on the protocol. More details are described in the protocols.

 18

 Important notes on the SOAP protocol endpoints

1. For the SOAP endpoints, the Mobilithek publishes the corresponding WSDLs that specify the
endpoints. For reasons of compatibility with the MDM, the Mobilithek also accepts data
packets if they do not conform to the payload scheme specified in the WSDL. This means that
the Mobilithek does not perform a formal validation against the WSDL. Rather, it limits the
formal validation of requests to basic requirements, such as providing a well-formed XML and
a valid SOAP request (SOAP Envelope and SOAP Body is included), as well as other minimal
requirements to successfully process a request. The specific requirements including the error
code are explicitly specified in the respective protocol-specific chapters.

2. As a consequence of point 1, data recipients cannot rely on the delivered data package and
thus the SOAP body being compliant with the WSDL.

4.1 Encryption of communication

Data provider systems and data recipient systems can access the services of the platform via the

interfaces offered by the Mobilithek. These services for data collection and delivery are offered under

defined, standardized URLs [URL] and require certificate-based client authentication via HTTPS

[HTTPS]. X.509-compliant certificates are used for client authentication [PKI], these are issued by the

operator of the Mobilithek.

In cases where the Mobilithek acts as a client, it uses an X.509 compliant certificate to authenticate

itself - if necessary - to the data provider or data recipient system acting as a server, see chapter 10.4

4.2 Compression

Both GZIP-encoded (i.e., compressed) and uncompressed HTTPS requests and responses can be used

for data transmission between the Mobilithek and data provider systems.

The data transfer between Mobilithek and data recipient systems is - in deviation to [DATEXIIv2PSM]

- always takes place by means of GZIP-encoded HTTPS requests and responses.

This applies to HTTP, SOAP and OCIT-C regardless of the Exchange protocol selected.

4.3 Support of "Delta" data packets

Mobilithek generally supports the processing of Delta data packets .

If the Mobilithek receives a complete data packet, it replaces all data packets currently in the associated

data packet buffer. The Mobilithek stores a received "delta" data packet in the sequence of its receipt

in the associated data packet buffer.

Data receiver systems can access all existing data packages incl. the last complete delivery in the order

of delivery via the data receiver pull interface. This mechanism can also be used by data receivers who

have configured PUSH as the delivery mode.

 19

In principle, data users who only access data services via PULL can also benefit from the bandwidth

reduction resulting from the use of delta deliveries.

Since the Mobilithek does not evaluate, modify in any respect, or assemble the package content, it is

the responsibility of the data provider system to deliver the data packages to the Mobilithek in the

order that will allow a data receiver system to assemble them into a complete publication.

The identification whether it is a complete or a delta data package depends on the data format. Delta

delivery is currently supported for DATEX II v3.

4.4 Validity period of data packets

A data provider can optionally specify a validity period for a publication via the user interface. If a

validity period is specified, it defines the maximum time span between the submission of data packages

for the publication in question. If this period is exceeded, the associated packet buffer is marked as

"out of date".

This has the following consequences in detail:

▪ The packet buffer is emptied.

▪ No further data packets for this data offer are transmitted to data recipients. Ongoing data

transmissions are not interrupted.

▪ If delta support is activated, delta packets are discarded and not forwarded to data recipients.

▪ From the data recipient's point of view, the situation is as if no data packets are available for

this data offer.

▪ The "out-of-date" status is cancelled when a complete data package is provided again by the

data provider.

4.5 Promise of immutability

The Mobilithek is designed to pass on the data delivered by the data provider unchanged to the data

receiver(s). The broker system may not change the user data portion, the "DATEX II payload" of the

data packets received.

The phrase "promise of immutability" has become established for this principle .

A significant effect of the "immutability promise" is that all namespace declarations that refer to the

DATEX II payload must be defined within the <d2LogicalModel> element (DATEX II v2) or at the so-

called messageContainer (DATEX II v3) so that these declarations remain part of the payload, e.g. even

when delivered via SOAP and subsequently forwarded via HTTP (the SOAP envelope is removed in

these cases). If data packages are provided in which namespace declarations are in the SOAP envelope,

declarations which are required will be moved to the corresponding XML elements upon delivery of

the data package. Further, due to technical reasons a re-sorting of namespace declarations can happen.

Those modifications do not change the data package from a semantic or content point of view.

 20

The following is an example for each of DATEX II v2 and DATEX II v3 of an implementation that

adheres to the immutability promise.

4.5.1 DATEX II v2

<?xml version='1.0' encoding='UTF-8'?>

<soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <d2LogicalModel xmlns="https://datex2.eu/schema/2/2_0" modelBaseVersion="2">

 <exchange>

 <supplierIdentification>

 <country>de</country>

 <nationalIdentifier>DE-Mobilithek-Musterorg</nationalIdentifier>

 </supplierIdentification>

 </exchange>

 <payloadPublication xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"

 xsi:type="SituationPublication" lang="DE">

 <publicationTime>2021-08-18T13:09:00.106+02:00</publicationTime>

 ...

 </payloadPublication>

 </d2LogicalModel>

 </soapenv:Body>

</soapenv:Envelope>

 21

4.5.2 DATEX II v3

<?xml version='1.0' encoding='UTF-8'?>

<soapenv:Body>

 <con:messageContainer xmlns:con="http://datex2.eu/schema/3/messageContainer"

 xmlns:ex="http://datex2.eu/schema/3/exchangeInformation"

 xmlns:d2="http://datex2.eu/schema/3/d2Payload"

 xmlns:loc="http://datex2.eu/schema/3/locationReferencing"

 xmlns:com="http://datex2.eu/schema/3/common"

 xmlns:sit="http://datex2.eu/schema/3/situation"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="<URL des Schema Files>"

 modelBaseVersion="3">

 <con:payload lang="en"

 xsi:type="sit:SituationPublication"

 modelBaseVersion="3">

 ...

 </con:payload>

 <con:exchangeInformation modelBaseVersion="3">

 <ex:exchangeContext>

 <ex:codedExchangeProtocol>snapshotPush</ex:codedExchangeProtocol>

 <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion>

 <ex:supplierOrCisRequester/>

 </ex:exchangeContext>

 <ex:dynamicInformation>

 <ex:exchangeStatus>online</ex:exchangeStatus>

 <ex:messageGenerationTimestamp>2021-07-21T13:00:00

 </ex:messageGenerationTimestamp>

 </ex:dynamicInformation>

 </con:exchangeInformation>

 </con:messageContainer>

</soapenv:Body>

Example for the case, that the namespace declarations have been allocated to the SOAP envelope upon

package delivery. Those declarations are now associated with the corresponding XML elements:

<soapenv:Envelope xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/>

 <soapenv:Header/>

 <soapenv:Body>

 <con:messageContainer xmlns:con=http://datex2.eu/schema/3/messageContainer>

 <con:payload lang="en"

 modelBaseVersion="3" xmlns:xsi=http://www.w3.org/2001/XMLSchema-

instance xsi:type="sit:SituationPublication">

 <test>Daten</test>

 </con:payload>

 <con:exchangeInformation modelBaseVersion="3">

http://schemas.xmlsoap.org/soap/envelope/
http://datex2.eu/schema/3/messageContainer
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

 22

 <ex:exchangeContext xmlns:ex=http://datex2.eu/schema/3/exchangeInformation>

 <ex:codedExchangeProtocol>snapshotPush</ex:codedExchangeProtocol>

 <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion>

 <ex:supplierOrCisRequester/>

 </ex:exchangeContext>

 <ex:dynamicInformation xmlns:ex=http://datex2.eu/schema/3/exchangeInformation>

 <ex:exchangeStatus>online</ex:exchangeStatus>

 <ex:messageGenerationTimestamp>

 2022-11-07T14:36:00

 </ex:messageGenerationTimestamp>

 </ex:dynamicInformation>

 </con:exchangeInformation>

 </con:messageContainer>

 </soapenv:Body>

</soapenv:Envelope>

http://datex2.eu/schema/3/exchangeInformation
http://datex2.eu/schema/3/exchangeInformation

 23

 Important notes on DATEX II v3

1. The <codedExchangeProtocol> element (required element), depends on the in/delivery
protocol used as well as the type of data packet.

2. When submitting a data package to the Mobilithek, the following value is expected:

a. "snapshotPush" if it is a complete data packet and the data provider delivers the
packet using push.

b. "deltaPush" if it is a delta data packet and the data provider delivers the packet via
push.

c. "snapshotPull" if the Mobilithek picks up the data packet from the data provider
system and it is a complete data packet.

d. "deltaPull" if the Mobilithek fetches the data packet from the data provider system
and it is a delta data packet.

3. Each time the Mobilithek is delivered to the data receiver system, the value of this element is
set as follows:

a. "snapshotPush" if the Mobilithek delivers the data packet to the data receiver using
push and the data packet was delivered by the data provider system using either
"snapshotPull" or "snapshotPush".

b. "deltaPush" if the Mobilithek delivers the data packet to the data receiver using push
and the data packet was delivered by the data provider system using either "deltaPull"
or "deltaPush".

c. "snapshotPull" if the data receiver sends a pull request to the Mobilithek and the data
packet was delivered by the data provider system using either "snapshotPull" or
"snapshotPush".

d. "deltaPull" if the data receiver sends an pull request to the Mobilithek and the data
packet was delivered by the data provider system using either "deltaPull" or
"deltaPush".

4. SOAP pull requests always deliver only the last complete data package supplied by the data
provider. Delta data packets cannot be obtained from the Mobilithek using SOAP-Pull.

5. The value of the <messageGenerationTimestamp> element is not reset when the mobile
library is delivered to the data receiver system. This means that the timestamp is an end-to-
end value that corresponds to the original timestamp of the delivered data package.

 24

4.6 Use of the interfaces

When using the HTTPS or SOAP protocol, there are three different operation modes for the exchange

of data, all of which are supported by the Mobilithek:

Mode Description

Client Pull The communication is initiated by the client (Mobilithek to data provider
or data recipient system to Mobilithek) and the data is sent as a response.

Publisher Push Periodic The communication is initiated by the publisher (data provider system to
Mobilithek) at predefined intervals.

Publisher Push on Occurrence Communication is initiated by the publisher (data provider system to
Mobilithek or Mobilithek to data recipient) whenever the data changes.

Table 7: Operating modes of r Mobilithek

For data exchange with the Mobilithek, transport encryption1 with TLS 1.2 or TLS 1.3 and

authentication by means of standard-compliant X.509v3 certificates must be used for all protocols. If

the standard protocols provide for basic authentication by means of username and password, these

protocol elements are ignored. This applies in particular to the OCIT protocol [OCIT-C]protocol, as

will be explained in the following.

The Mobilithek implements an OCIT-C interface based on the OCIT-C standard in version 1.1_R1 of

30.10.2014. The OCIT-C range of functions is only offered by the Mobilithek to a limited extent and

under the specification of a specific use of protocol elements. Only DATEX II v2 is used as the data

model for OCIT-C as described in this document or in [DATEXIIv2Spec] described. The OCIT-C data

models are not supported.

4.6.1 Data provider side

The Mobilithek acts as a subscriber to the data provider (the publisher) and receives the data packets.

Depending on the procedure, the broker system can take on the role of a server or client.

1 The following cipher suites are supported:

▪ TLS_AES_128_GCM_SHA256
▪ TLS_AES_256_GCM_SHA384
▪ TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
▪ TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
▪ TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
▪ TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
▪ TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
▪ TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
▪ TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
▪ TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

 25

When using the OCIT-C protocol, the broker system acts as a server and the data provider system as a

client.

4.6.2 Data recipient side

The Mobilithek acts as a publisher towards the data recipient (the subscriber) and provides the data

packets. Depending on the procedure, the broker system can take on the role of a server or client.

When using the OCIT-C protocol, the broker system acts as a server and the data receiver system as a

client.

4.7 Error handling

4.7.1 Client pull from data provider

If the data provider has configured Pull as the communication path and the data provider system

responds to a Pull Request from the Mobilithek with an error, the Pull Request will not be repeated

immediately. The Mobilithek will execute the next pull request according to the time period specified

by the data provider.

4.7.2 Publisher Push

If the data recipient has configured push as the communication path and the configured data recipient

system cannot be reached, the Mobilithek will attempt to reach the data recipient system at

increasingly longer intervals. Only when the data receiver system is technically reachable will a new

data delivery be attempted. The interval between the intervals grows exponentially. The technical

implementation is protocol-specific and is explained in the corresponding chapters.

If the data receiver system responds to a transmission attempt with an HTTP response status of 500

or 4xx, the transmission attempt is repeated immediately. If this transmission attempt also fails, a new

data transmission is only initiated by the Mobilithek after receipt of the next complete data delivery by

the data provider.

4.8 Use of the "If-Modified-Since" header field in the HTTPS
protocol

The broker system supports the header field "If-Modified-Since" in connection with the field "Last

Modified" (cf. [HTTP/1.1]). This avoids the repeated sending or collection of messages that have already

been delivered. According to the HTTP standard, the resolution of the time stamp is on the second

level. The Mobilithek rounds up the timestamp, which is set when the data packet is received, to the

next full second.

If the HTTP request does not contain the header field "If-Modified-Since", the last data packet

delivered will be delivered by the Mobilithek.

 26

In connection with publications for which delta support is activated, data recipients can also benefit

from the bandwidth reduction made possible by the use of delta data packets via the PULL interfaces

by using this header. For this purpose, the first PULL request is started with a timestamp far in the past.

This request delivers the oldest data packet from the data buffer, which by definition is a complete

data packet (see chapter 4.3). In the following PULL requests, the timestamp from the header element

"Last-Modified" is used.

Example:

If the response of the previous data packet contains the following header line

Last-Modified: Sat, 29 Oct 1994 19:43:31 GMT

the next data packet is requested with a request containing the following header line:

If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

4.8.1 Data provider

The broker system always sends the requests with an "If-Modified-Since" header field if the data

provider system had set the "Last-Modified" header field in its response.

The data provider system should always set this header field to enable the Mobilithek to apply this

feature!

4.8.2 Data recipient

The responses of the broker system always contain the header field "Last-Modified". If the data

receiving system wants to use this feature, it must always send the value from the last Last-Modified

header field.

It is strongly recommended to implement this feature on the data receiver side!

4.8.3 Unchanged data

If a DATEX II client pull request uses the header field "If-Modified-Since" and there are no more recent

data packets than those already retrieved, an HTTP status code 304 = "Not-Modified" is generated.

 27

5 Data format-independent interfaces

5.1 Deleting the publication content

Via this interface, a data provider system can request the Mobilithek to delete all contents of a

publication. The publication itself remains intact.

Request to the Mobilithek

The data provider system sends an HTTPS DELETE request to the mobile library. The associated packet

buffer is identified with the publication ID passed in the request.

The URL of the broker system is structured as follows:

https://mobilithek.info:8443/mobilithek/api/v1.0/publication/<Publikations-ID>

Response to the data provider

The Mobilithek broker system generates an HTTPS response after receiving the request. If the request

was processed successfully, the Mobilithek broker system responds with a response code 200 and an

empty response body.

In the event of an error, the response body contains an error text.

Status codes can be the standard HTTP status codes [HTTP/1.1] can occur as status codes, whereby

the Table 18 described meanings apply:

Description

Request Request DELETE
/mobilithek/api/v1.0/publication/2000000 HTTP/1.1

Host: mobilithek.info

Accept-Encoding: gzip

Response Response HTTP/1.1 200 OK

Status codes Standard HTTP1.1 Status Codes [HTTP/1.1]

▪ 400: Incorrect request, e.g. specification of a non-numeric publication ID.

▪ 403: The data provider system is not authorised to delete the content of the specified
publication.

▪ 404: Publication was not found or no publication ID was specified.

▪ 503: Service Unavailable (e.g. during maintenance)

Table 8: Request/response between Mobilithek/data provider system when deleting the publication content

 28

6 DATEX II v2

6.1 SOAP interface

6.1.1 Data provider side

6.1.1.1 Client Pull SOAP

In the Client Pull SOAP exchange procedure, the Mobilithek broker system requests the data provider

system to deliver its data to the Mobilithek.

Providing a web service

The data provider system must offer a web service with the method getDatex2Data, which is defined

based on the DATEX II Pull WSDL [DATEXIIv2Pull] is defined. As input nothing is expected, as output

the broker system of the mobile library gets back the requested data in DATEX II format: in the body

element an object of the type d2LogicalModel is expected. According to the note in chapter 4 the

Mobilithek broker system accepts all data packets, provided they are provided in the form of a valid

XML. The broker system accepts the content of the SOAP body as a data package.

Via the administration component of the Mobilithek, the data provider must store the URL of his

service endpoint in the publication configuration.

Calling a web service

The broker system of the Mobilithek provides a web service client defined based on the DATEX II Pull

WSDL [DATEXIIv2Pull] for calling web services. This web service must return data according to a

DATEX II v2 schema [DATEXIIv2Schema]. It is expected that a suitable profile will be used from the

overall schema.

The broker system identifies the data provider systems that have subscribed to a pull procedure and

the associated service endpoints in the metadata directory and calls them cyclically according to the

configured publication frequency. The data received after the call are temporarily stored in

corresponding packet buffers for delivery to potential data recipients. Any previous data package that

may still exist is replaced in the process.

6.1.1.2 Publisher Push SOAP

With the Publisher Push exchange procedure, the data provider system must deliver the data to the

Mobilithek on its own. A corresponding SOAP interface must be used. Whether the data is generated

because of an event (on occurrence) or periodically (periodic) and delivered to the Mobilithek is

irrelevant for the functioning of the Mobilithek broker system. The exchange mechanism is identical in

both cases.

 29

Providing a web service

The broker system of the Mobilithek offers a web service with the method putDatex2Data, which is

defined based on the specification DATEX II Push WSDL [DATEXIIv2Push] specification. The data to

be transferred is expected as input, and the data provider system receives confirmation data in DATEX

II format as output. An object of the type d2LogicalModel is expected in the body element.

The output consists of an acknowledgement of receipt (Acknowledge message, see below).

In the URL of the service end point at the broker system, the ID of the publication in which the data

packets are to be placed must be entered.

The URL is structured as follows:

https://mobilithek.info:8443/mobilithek/api/v1.0/publication/soap/<publication

ID>/supplierPushService

If a numeric publication ID has been specified but does not exist or is not active, the Mobilithek

responds with an HTTP response code 200 and a SOAP response with the denyReason

"wrongCatalogue" and the response code "requestDenied":

<?xml version='1.0' encoding='UTF-8'?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" >

 <soapenv:Body>

 <d2LogicalModel xmlns="http://datex2.eu/schema/2/2_0" modelBaseVersion="2">

 <exchange>

 <denyReason>wrongCatalogue</denyReason>

 <response>requestDenied</response>

 <supplierIdentification>

 <country>de</country>

 <nationalIdentifier>Mobilithek.info</nationalIdentifier>

 </supplierIdentification>

 </exchange>

 </d2LogicalModel>

 </soapenv:Body>

</soapenv:Envelope>

 30

If the DATEX II element in the <exchange> element" contains a <keepAlive> element with the value

true, no payload is expected. The mobile library responds with an acknowledge message.

<?xml version='1.0' encoding='UTF-8'?>

<soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <d2LogicalModel xmlns="https://datex2.eu/schema/2/2_0" modelBaseVersion="2">

 <exchange>

 <keepAlive>true</keepAlive>

 </exchange>

 </d2LogicalModel>

 </soapenv:Body>

</soapenv:Envelope>

<?xml version='1.0' encoding='UTF-8'?>

<soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <d2LogicalModel xmlns="https://datex2.eu/schema/2/2_0" modelBaseVersion="2">

 <exchange>

 <response>acknowledge</response>

 </exchange>

 </d2LogicalModel>

 </soapenv:Body>

</soapenv:Envelope>

Calling the web service

The data provider system must provide a web service client defined based on the DATEX II Snapshot

Push WSDL [DATEXIIv2Push] to invoke the web service. The web service must deliver the data to the

publication-specific service endpoint of the broker system of the mobile library. The URL of the service

endpoint to be used is displayed in the publication configuration of the Mobilithek administration

component when the publication is created. The Mobilithek broker system accepts this data and stores

it in a packet buffer. Any previous data package that may still exist is replaced in the process.

 31

Error codes

HTTP Response
Code

SOAP Response Description

200

denyReason: requestDenied

response: unknownReason

Invalid XML or invalid SOAP request; error when
unpacking the request.

the publication is not a DATEX2 V2 publication or
the protocol specified by the data provider is not
PUSH SOAP.

denyReason: requestDenied

response: wrongCatalogue

There is no active publication with the specified
publication ID

400 empty body The specified publication ID is not numeric.

403 empty body The user assigned to the machine account is not
authorised to provide data for the specified
publication.

404 empty body No publication ID specified

Table 9: Error codes for DATEX II V2 - Publisher Push SOAP

6.1.2 Data recipient side

6.1.2.1 Client Pull SOAP

In the client pull SOAP exchange method, the data receiver system must request the mobile library to

send data to the data receiver system.

Providing a web service

The broker system of the Mobilithek provides a web service with the method getDatex2Data, which is

defined based on the specification [DATEXIIv2Pull] is defined. The subscription ID is expected as input

in the URL, and the data recipient receives the requested data in DATEX II format as output. An object

of the type d2LogicalModel is expected in the body element. Based on the transmitted subscription ID,

the Mobilithek can determine the associated package buffer and the data package.

Example:

<?xml version='1.0' encoding='UTF-8'?>

<soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body />

</soapenv:Envelope>

Calling the web service

The data receiving system must provide a web service client to [DATEXIIv2Pull] specification to call

the web service. The corresponding subscription ID must be included in the URL as an input parameter.

The SOAP endpoint of the broker system is:

 32

https://mobilithek.info:8443/mobilithek/api/v1.0/subscription/soap/<Subskription-

ID>/clientPullService

Error codes

HTTP Response
Code

SOAP Response Description

200 faultcode: Server

faultstring: Datex-II ClientPull -
no data

The associated packet buffer does not contain a data
packet

400

empty body The specified subscription ID is not numeric

Required HTTP headers are missing, e.g. "Accept-
encoding" header is not specified.

HTTPS Request Body is empty

404 empty body No subscription ID specified

406 empty body In the accept-encoding header, gzip is missing as an
accepted encoding.

500 faultcode: Server

faultstring: Contract can not be
found, is not active or not
available for provided orgId

The user assigned to the machine account is not
authorised to obtain data under this subscription or
the specified subscription does not exist.

faultcode:Server

faultString: Offer validation not
passed reason: Access protocol,
data model don't match

The publication associated with the subscription is
not a DATEX2 V2 publication.

Table 10: Error codes for data receiver DATEX II V2 Pull SOAP

6.1.2.2 Publisher Push SOAP

In the Publisher Push exchange procedure, the broker system of the Mobilithek delivers the data to

the data recipient systems on its own. A corresponding SOAP interface is used for this. Whether the

data is generated based on an event (on occurrence) or periodically (periodic) and delivered to the

Mobilithek is irrelevant, the mechanism for delivery to the data recipient is identical.

Providing a web service

The data receiver system must offer a web service with the method putDatex2Data, which is defined

based on the specification [DATEXIIv2Push]. The requested data is expected as input, and the mobile

 33

library receives confirmation data in DATEX II format as output. An object of the type d2LogicalModel

is expected in the body element.

Calling the web service

The broker system provides a web service client based on [DATEXIIv2Push] for calling up the data

recipient web services. Via the administration component of the Mobilithek, the data recipient must

store his service endpoint in the subscription configuration.

The broker system identifies these data recipient systems and starts a corresponding web service call.

If the transmission of the data could be completed successfully, the broker system expects a -

corresponding acknowledgement message from the data receiver system. The following example

shows the content of such a so-called acknowledgement response, which is contained in the body

element when transmitting with the SOAP protocol.

<?xml version='1.0' encoding='UTF-8'?>

<soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <d2LogicalModel xmlns="https://datex2.eu/schema/2/2_0" modelBaseVersion="2">

 <exchange>

 <response>acknowledge</response>

 </exchange>

 <supplierIdentification>

 <country>de</country>

 <nationalIdentifier>DE-NAP-(ORGANISATIONSNAME)</nationalIdentifier>

 </supplierIdentification>

 </d2LogicalModel>

 </soapenv:Body>

</soapenv:Envelope>

If the data receiving system does not acknowledge the transmission with an acknowledge response,

the transmission is repeated in accordance with chapter 4.7.2 the transmission is repeated.

If the data receiving system is technically not accessible, the mobile library sends "keep-alive" messages

to the data receiving system until it responds with an acknowledgement response. Only then is the

transmission of data continued. The example below shows a "keep-alive" message:

<?xml version='1.0' encoding='UTF-8'?>

<soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <d2LogicalModel xmlns="https://datex2.eu/schema/2/2_0" modelBaseVersion="2">

 <exchange>

 <keepAlive>true</keepAlive>

 </exchange>

 </d2LogicalModel>

 </soapenv:Body>

</soapenv:Envelope>

 34

6.2 HTTPS interface

6.2.1 Data provider side

6.2.1.1 Client Pull HTTPS

In the client pull exchange procedure, the broker system of the Mobilithek cyclically requests the data

provider system to deliver its data to the Mobilithek. The time interval used must be configured when

configuring the data offering in the metadata directory. For this exchange, the following points apply

from the Simple HTTP Server Profile of the [DATEXIIv2PSM], Chapter 4, points C.1-C.12.

It should be noted that the other optional rules do not apply. The options for authentication (C. 13, C.

14, C. 17) do not apply, as they are obsolete when using the HTTPS procedure, which is mandatory for

the Mobilithek. C. 18-C. 27 are not applicable, as the options only relate to the optional provision of

DATEX II data in file form, which is not used for the Mobilithek. Return values are defined differently

from C.15. The rule for building URLs to the payload (C.16) is not applied. See also Appendix B - DATEX

II HTTP Protocol Support.

Request to the data provider

The Mobilithek broker system sends an HTTPS GET request to the data provider system from which

the data is to be fetched. The Mobilithek is able to identify data provider systems that have subscribed

to a pull procedure and send requests to them at defined intervals .

The data provider must store the publication-specific server URL in the publication configuration via

the administration component of the Mobilithek. The URL must be stored in full by the data provider.

The Mobilithek does not add parameters to it, such as the publication ID.

Please also note the instructions in chapter 4.8 “Use of the "If-Modified-Since" header field”.

Response to the Mobilithek

After receiving the request, the data provider system must generate an HTTPS response whose

message body consists of the requested DATEX II data. According to [DATEXIIv2PSM] Chapter 4, the

response has the content type "text/xml; charset=utf-8" and can be available as GZIP encoding.

The broker system of the Mobilithek accepts this data and stores it in a packet buffer. Any previous

data package that may still be present is replaced in the process.

6.2.1.2 Publisher Push HTTPS

The data provider system must send a data packet for a publication to the Mobilithek broker system.

Request to the Mobilithek broker system

The data provider system must send an HTTPS POST request with a message in the HTTP request

body to the Mobilithek broker system.

 35

The publication ID must be specified as a path element in the URL. The user data is passed in the HTTP

request body

The Content-Type header to be sent depends on the syntax to which the corresponding data offer is

set.

The URL of the broker system is structured as follows:

https://mobilithek.info:8443/mobilithek/api/v1.0/publication/datexv2/<publicationID>

It should be noted that the HTTPS interface does not support "keep-alive" messages.

Response to the data provider

The data provider system receives an HTTPS response to the request. The message body is empty, the

standard HTTP status codes [HTTP/1.1] can occur as status codes, whereby the meanings in Table 25

apply.

Description

Request Request POST /mobilithek/api/v1.0/publication/datexv2/<publicationID>

HTTP/1.1

Host: mobilithek.info

Content-Type: text/xml oder application/xml or application/json

Accept-Encoding: gzip

Response Response HTTP/1.1 200 OK

Statuscodes Standard HTTP1.1 Statuscodes [HTTP/1.1]

The following status codes have a special meaning:

▪ 400: The specified publicationId is not numeric or the request is not structured
correctly.

▪ 404: Publication parameter could not be assigned, the publication is no longer
valid or no value was specified after the slash in the URL path

▪ 403: The user is not authorized to submit data via this endpoint for the specified
publication, or the publication has not been configured to be delivered over
HTTPS.

Table 11: Request/Response between Provider System/Mobilithek during Publisher Push DatexIIv2 HTTPS

6.2.2 Data recipient side

6.2.2.1 Client Pull HTTPS

In the client pull exchange procedure, the data receiver system must request the broker system of the

mobile library to transmit the data.

 36

Request to the Mobilithek

The data receiver system must send an HTTPS GET request to the URL of the mobile library. Based on

the subscription ID, the associated packet buffer as well as the data packet is determined.

The subscription ID must be passed in the path of the URL and additionally as a parameter. The URL

of the broker system is therefore structured as follows:

https://mobilithek.info:8443/mobilithek/api/v1.0/subscription/<Subskription-

ID>/clientPullService?subscriptionID=<Subskription-ID>

Please also note the instructions in chapter 4.8 “Use of the "If-Modified-Since" header field”.

Response to the data recipient

The broker system of the Mobilithek generates an HTTPS response after receiving the request. For this

purpose, the corresponding packet buffer and the appropriate data packet are determined based on

the subscription ID. The content of the data packet is transmitted to the data recipient in the body of

the response. According to the DATEX II Client Pull HTTP Profile [DATEXIIv2PSM] Chapter 4, the

response has the content type "text/xml; charset=utf-8" and is - in deviation to [DATEXIIv2PSM] - is

always sent in GZIP compressed form.

Status codes can be the standard HTTP status codes [HTTP/1.1] can occur as status codes, whereby

the meanings Table 12 described meanings apply.

 37

Description

Request Request GET
/mobilithek/api/v1.0/subscription/2000000/clientPullService?subscriptionID=2000000

HTTP/1.1

Host: mobilithek.info

Accept-Encoding: gzip

Response Response HTTP/1.1 200 OK

Content-Type: text/xml

Content-Length: xx

<d2LogicalModel >

...

</d2LogicalModel >

Status codes Standard HTTP1.1 Status Codes [HTTP/1.1]

The following status codes have a special meaning:

▪ 204: No data packet in the packet buffer for subscription.

▪ 304: No data packet in the packet buffer that is younger than the timestamp in the
"if-modified-since" header.

▪ 400: No subscription parameter specified in the request or missing "Accept-
Encoding" header or subscription parameter is not numeric.

▪ 403: The user is not authorised to retrieve this subscription via this endpoint or it is
not a DATEX2 V2 publication associated with this subscription.

▪ 404: Subscription is no longer valid or does not exist.

▪ 406: gzip not specified in the "Accept-Encoding" request header.

Table 12: Request/Response between Mobilithek/Data Recipient System with Client Pull HTTPS

 38

6.3 OCIT-C interface

Note: This interface only supports DATEX II v2. It does not support the DATEX II v3 standard!

6.3.1 Scope of functions

The Mobilithek implements the subset of protocol functions from the functional scope of the OCIT-C

standard that are required for the transmission of a current data package with all the inf ormation of a

publication. The exchange of subsets of data (delta deliveries) is not supported. Historical data can also

not be queried.

The Mobilithek implements a web service with the full WSDL OCIT_Cif.wsdl, which is accessible under

specific OCIT endpoints. However, calling an unsupported operation is answered with an unmodelled

SOAP fault (HTTP response code 500) with the value "Method not found".

The data schema is defined by the OCIT-C schema protocol.xsd. The OCIT messages use a data list to

transport the data, which can contain several data objects. In communication with the Mobilithek, the

data list may only ever contain exactly one data object. The DATEX II package must be transparently

embedded in the <data> element of the message. Data deliveries with multiple packages are

acknowledged with an error.

The <data> element of the OCIT-C message is specified in the protocol.xsd as an element of the type

anyType. For SOAP-compliant transmission, the <data> element must be typed. For this purpose, a

new data type anyD2LogicalModel is introduced using the OcitCDatex2.xsd below.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns="https://odg_und_partner/OCIT_C/Datex"

 xmlns:xs="https://www.w3.org/2001/XMLSchema"

 xmlns:D2LogicalModel="https://datex2.eu/schema/2/2_0"

 targetNamespace="https://odg_und_partner/OCIT_C/Datex"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:element name="d2LogicalModel" type="anyD2LogicalModel"/>

 <xs:complexType name="anyD2LogicalModel">

 <xs:sequence>

 <xs:any namespace="https://datex2.eu/schema/2/2_0"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

The scheme can be referenced via the following URL:

https://bast.s3.amazonaws.com/schema/1446644360562/OcitCDatex2.xsd

https://bast.s3.amazonaws.com/schema/1446644360562/OcitCDatex2.xsd

 39

6.3.2 Data provider side - Publisher Push OCIT-C

The Publisher Push functionality is mapped to the OCIT-C method put. A put call must always be

uniquely assigned to a publication by referencing a publication ID. This publication ID, which is

automatically assigned by the MDV of the mobile library, must be transferred by the data provider

system in the OCIT-C element <objectType>.

A put message must contain exactly one element of the DATEX II type D2LogicalModel. For this

purpose, the request must contain a data list with exactly one data object. A request with several data

objects is rejected by the Mobilithek with an error. The delivery of a DATEX II element must always be

complete, i.e. contain all data points or objects of the publication. However, Mobilithek will not check

this. It is the responsibility of the data provider system to ensure completeness.

In the metadata management of the Mobilithek, the DATEX II element can be manually validated

against the publication schema stored in the Mobilithek. This schema may only describe the DATEX II

payload without the OCIT-C container. Validation of the entire OCIT message does not take place.

The following paragraph shows an example of a possible delivery in OCIT-C format for a publication

with the fictitious ID=2600103 of a fictitious organisation "TEST". The DATEX II payload is shown in

abbreviated form.

 40

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="https://www.w3.org/2001/XMLSchema"

 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <put xmlns="https://odg_und_partner/OCIT_C">

 <userName>Hello</userName>

 <passWord/>

 <objectType>2600103</objectType>

 <putList>

 <putds>

 <identifier>

 <ident>test</ident>

 </identifier>

 <data xsi:type="ns1:anyD2LogicalModel"

 xmlns:ns1="https://odg_und_partner/OCIT_C/Datex"

 xsi:schemaLocation="https://bast.s3.amazonaws.com/schema/

 1446644360562/OcitCDatex2.xsd">

 <ns2:d2LogicalModel modelBaseVersion="2" extensionName="Mobilithek"

 extensionVersion="00-01-03"

 xmlns:ns2="https://datex2.eu/schema/2/2_0"

 xmlns:xsi="https://www.w3.org/2001/

 XMLSchema-instance"

 xsi:schemaLocation="

 https://bast.s3.amazonaws.com/schema/

 1370477853100/

 Mobilithek-Profile_ParkingFacilityStatus.xsd">

 <ns2:exchange>

 <ns2:supplierIdentification>

 <ns2:country>de</ns2:country>

 <ns2:nationalIdentifier>DE-Mobilithek-TEST</ns2:nationalIdentifier>

 </ns2:supplierIdentification>

 </ns2:exchange>

 <ns2:payloadPublication xsi:type="GenericPublication" lang="de"

 xmlns:xsi="https://www.w3.org/2001/

 XMLSchema-instance">

 …

 </ns2:payloadPublication>

 </ns2:d2LogicalModel>

 </data>

 </putds>

 </putList>

 </put>

 </soapenv:Body>

</soapenv:Envelope>

 41

During data delivery, the Mobilithek ignores the following elements from the OCIT-C protocol:

▪ username

▪ password

▪ identifier within the putds attribute

The Mobilithek acknowledges the delivery with an OCIT message of the type putResponse. The

elements are set as follows:

▪ lastStart = Time of delivery to the Mobilithek

▪ errorCode = 0; In principle, a formally correct delivery is always acknowledged as error-free

regardless of the quality of the data package.

▪ errorText = without content

▪ badList = empty element

The following paragraph shows an example response:

<?xml version="1.0" encoding="UTF-8"?>

 <soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="https://www.w3.org/2001/XMLSchema"

 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <putResponse xmlns="https://odg_und_partner/OCIT_C">

 <lastStart>2015-04-28T11:39:06.948Z</lastStart>

 <errorCode>0</errorCode>

 <errorText></errorText>

 <badList/>

 </putResponse>

 </soapenv:Body>

 </soapenv:Envelope>

Error codes

With the exception of the situation where an invalid SOAP request is made, the Mobilithek responds

to errors with an HTTP Response 200 and a corresponding error code and text. The following table

describes the error codes and situations.

HTTP Response
Code

SOAP Response Description

500 SOAP Fault

faultcode: Client

faultstring: invalid - XML

Invalid XML or invalid SOAP request

SOAP Fault Multiple SOAP methods identified in the request, or

 42

HTTP Response
Code

SOAP Response Description

faultcode: Client

faultstring: SOAP action cannot
be determined

the first element in the SOAP body is not one of the
supported SOAP methods: <put>, <inquireAll>,
<get> or <waitForGet>.

200 errorCode: 1

errorText: access error -
erroneous object type

The specified publication ID is not numeric

errorCode: 1

errorText: access error - exactly
one putds must be present

The request contains more than one <putds>
element

errorCode: 14

errorText: found empty object
type

No publication ID found in <objectType> element

errorCode: 15

errorText: object type not found -
is missing

<objectType> Element not found in the request.

errorCode: 1

errorText: access error

The user assigned to the machine account is not
authorised to provide data for the specified
publication, or

the specified publication is not a DATEX2 V2
publication, or

OCIT-C has not been defined as an access protocol.

errorCode: 1

errorText: access error - no valid
certificate-publication match

The specified publication ID does not exist.

errorCode: 1

errorText: access error - exactly
one putds must be present

The SOAP request supports exactly one <putds>
element

Table 13: Error codes for OCIT-C Publisher Push

 43

6.3.3 Data receiver side - Client Pull OCIT-C

The Client Pull functionality is mapped to the following three OCIT-C methods:

▪ inquireAll

▪ get

▪ wait4Get

An OCIT-C client can synchronise itself to the current data status after it has been started using the

inquireAll method. The Mobilithek supports the inquireAll method for this purpose. In the

inquireAllResponse, the Mobilithek passes the last valid packet and an internal ID to the client. The

client can then use the get or wait4Get methods to continuously fetch current packets. In doing so, the

client must always refer to its last package ID. If there is no new package in the mobile library, the get

method returns immediately with an empty response. The wait4Get method waits until a current data

package is available or a maximum timeout specified by the client or defined by the server has been

reached. By using the wait4Get method, a push characteristic can be implemented in the direction of

the data recipient. In contrast to the actual OCIT-C behaviour, the Mobilithek always returns a

complete data packet with a get or wait4Get response and not only delta data related to the last

position. The Mobilithek does not support delta packets for DATEX II v2.

As an alternative to an inquireAll call, a client can also call the get method with the element value

position=0 in order to initialise itself or to fetch the last available packet in this way at any time.

For all three pull methods, the Mobilithek ignores the following elements of the request from the

OCIT-C protocol:

▪ username

▪ password

▪ watchdog

The attribute filterList in the call is also not supported in all three methods and must always be

requested empty by the data receiver system.

A client pull must always be uniquely assigned to a subscription by referencing a subscription ID. This

subscription ID, which is automatically assigned by the MDV of the mobile library, must be transferred

by the data subscriber system in the OCIT-C element <objectType>.

 44

The following paragraph shows an example of a request for delivery in OCIT-C format for a fictitious

subscription with ID=2871015 of a fictitious organisation "TEST".

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="https://www.w3.org/2001/XMLSchema"

 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <inquireAll xmlns="https://odg_und_partner/OCIT_C">

 <userName>Hello</userName>

 <passWord/>

 <objectType>2871015</objectType>

 <filterList/>

 </inquireAll>

 </soapenv:Body>

</soapenv:Envelope>

The corresponding inquireAllResponse contains a data list with exactly one element of the DATEX II

type D2LogicalModel. The Mobilithek sets the following OCIT-C elements as follows:

▪ lastStart = an undefined constant time that the client should ignore.

▪ errorCode = 0

▪ errorText = without content

▪ storetime/tstore = time of delivery of the publication in the Mobilithek

▪ position = packet ID, ID of the current data packet, only relevant for the OCIT-C methods

specified here.

▪ objectState = modified

▪ identical = None

▪ data = DATEX II Payload

The following paragraph shows an example response. The DATEX II payload is shown in abbreviated

form.

 45

<?xml version="1.0" encoding="UTF-8"?>

 <soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="https://www.w3.org/2001/XMLSchema"

 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <inquireAllResponse xmlns="https://odg_und_partner/OCIT_C">

 <lastStart>2015-04-28T11:39:06.948Z</lastStart>

 <errorCode>0</errorCode>

 <errorText></errorText>

 <storetime>2015-04-29T11:57:59.346Z</storetime>

 <position>1</position>

 <dataList>

 <ds>

 <tstore>2015-04-29T11:57:59.346Z</tstore>

 <objectState>modified</objectState>

 <identifier>

 <ident>None</ident>

 </identifier>

 <data xsi:type="ns1:anyD2LogicalModel"

 xmlns:ns1="https://odg_und_partner/OCIT_C/Datex"

 xsi:schemaLocation=" https://odg_und_partner/OCIT_C/Datex

 https://bast.s3.amazonaws.com/

 schema/1446644360562/OcitCDatex2.xsd">

 <d2LogicalModel modelBaseVersion="2" extensionName="Mobilithek"

 extensionVersion="00-01-03"

 xmlns="https://datex2.eu/schema/2/2_0"

 xmlns:xsi="https://www.w3.org/2001/

 XMLSchema-instance"

 xsi:schemaLocation="

 https://bast.s3.amazonaws.com/schema/1370439856400/

 Mobilithek-Profile_ParkingFacilityStatus.xsd">

 <exchange>

 <supplierIdentification>

 <country>de</country>

 <nationalIdentifier>DE-Mobilithek-TEST

 </nationalIdentifier>

 </supplierIdentification>

 </exchange>

 <payloadPublication xsi:type="GenericPublication" lang="de"

 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance">

 …

 </payloadPublication>

 </d2LogicalModel>

 </data>

 </ds>

 </dataList>

 </inquireAllResponse>

 </soapenv:Body>

 </soapenv:Envelope>

 46

With the help of the <position> element from the inquireAllResponse, the data receiver system can

parameterise the get or wait4Get method in the following to read subsequent packets.

A get call must always be uniquely assigned to a subscription by referencing a subscription ID and to a

data package by referencing the package ID. The data receiver system must pass this subscription ID

in the OCIT-C attribute <objectType>, the package ID in the attribute <position>. A get call using start

and end time is not supported by the Mobilithek.

The following example shows a get request for delivery in OCIT-C format for a fictitious subscription

with ID=2871015 and fictitious predecessor package ID=3876098:

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="https://www.w3.org/2001/XMLSchema"

 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <get xmlns="https://odg_und_partner/OCIT_C">

 <objectType>2871015</objectType>

 <position>3876098</position>

 </get>

 </soapenv:Body>

</soapenv:Envelope>

The Mobilithek then forms the getResponse and analogously a wait4GetResponse using the same

attributes as in the inquireAllResponse.

The same requirements apply to the wait4Get call as to the regular get call. In addition, the data

receiver system should transmit the timeout value of the client in the <maxWaitTime> element. If this

element is not transmitted, the wait4Get call behaves like a regular get call and returns immediately

with an empty response if no new data packet has been delivered in the meantime. If this value is above

the maximum value of 120 seconds configured in the Mobilithek, the Mobilithek default timeout is

applied and the caller receives a response after 120 seconds at the latest. This is empty if no new data

packet has been delivered within the waiting time.

The possibility of reading different objects with a single wait4Get call is not supported by the

Mobilithek. Therefore, only one subscription can be queried at a time with a wait4Get call. List queries

are rejected with an error.

The following paragraph shows an example of a wait4Get request for delivery in OCIT-C format for a

fictitious subscription with the ID=2871015, the fictitious content ID=3876098 and the value

maxWaitTime=60 seconds.

 47

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="https://www.w3.org/2001/XMLSchema"

 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <wait4Get xmlns="http://odg_und_partner/OCIT_C" maxWaitTime='60'>

 <get xmlns="http://odg_und_partner/OCIT_C">

 <objectType>2871015</objectType>

 <position>3876098</position>

 </get>

 </wait4Get>

 </soapenv:Body>

</soapenv:Envelope>

Below is an example wait4Get response from Mobilithek:

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope>

<soapenv:Header/>

 <soapenv:Body>

 <ocit:wait4GetResponse xmlns:ocit="http://odg_und_partner/OCIT_C">

 <ocit:lastStart>2021-07-22T15:37:38.000+02:00</ocit:lastStart>

 <ocit:errorCode>0</ocit:errorCode>

 <ocit:errorText></ocit:errorText>

 <ocit:waitResponseList>

 <ocit:storetime>2021-08-02T11:53:51.480+02:00</ocit:storetime>

 <ocit:objectType>0</ocit:objectType>

 <ocit:position>0</ocit:position>

 <ocit:dataList>

 <ocit:ds>

 <ocit:tstore>2021-08-02T11:53:51.480+02:00</ocit:tstore>

 <ocit:objectState>modified</ocit:objectState>

 <ocit:identifier>

 <ocit:ident>None</ocit:ident>

 </ocit:identifier>

 <ocit:data xsi:type="ns1:anyD2LogicalModel"

 xmlns:ns1="http://odg_und_partner/OCIT_C/Datex"

 xsi:schemaLocation="http://odg_und_partner/OCIT_C/Datex

 http://bast.s3.amazonaws.com/schema/

 1446644360562/OcitCDatex2.xsd">

 </ocit:data>

 </ocit:ds>

 </ocit:dataList>

 </ocit:waitResponseList>

 </ocit:wait4GetResponse>

 </soapenv:Body>

</soapenv:Envelope>

 48

Data packets are always delivered to the Mobilithek in compressed form. GZIP compression is used for

this. This also applies to delivery with the OCIT-C protocol. Data recipient systems must therefore

decompress the packages in the web server before they can be processed further with the help of the

OCIT-C protocol.

Error codes

With the exception of the situation where an invalid SOAP request is made, the Mobilithek responds

to errors with an HTTP Response 200 and a corresponding error code and text. The following table

describes the error codes and situations.

HTTP Response
Code

SOAP Response Description

500 SOAP Fault

faultcode: Client

faultstring: invalid - XML

Invalid XML or invalid SOAP request

SOAP Fault

faultcode: Client

faultstring: SOAP action cannot
be determined

Multiple SOAP methods identified in the request, or

the first element in the SOAP body is not one of the
supported SOAP methods: <put>, <inquireAll>,
<get> or <waitForGet>.

errorCode: 0

No data

No data packets available, or

no data packets available according to the <position>
element specified in the request

400 empty body missing "Accept-Encoding" header or subscription
parameter is not numeric

406 empty body In the accept-encoding header, gzip is missing as an
accepted encoding.

200 errorCode: 1

errorText: access error -
erroneous object type

The specified subscription ID is not numeric

errorCode: 14

errorText: found empty object
type

No subscription ID found in <objectType> element

errorCode: 15

errorText: object type not found -
is missing

<objectType> Element not found in the request.

errorCode: 1

errorText: access error - no valid
certificate-subscription match

The user assigned to the machine account is not
authorised to obtain data for the specified
subscription, or

the specified subscription is not a DATEX2 V2
publication

The specified subscription ID does not exist.

 49

HTTP Response
Code

SOAP Response Description

errorCode: 1

errorText: access error - exactly
one position must be present

The call of the <get> or <wait4Get> request requires
the specification of the <position> element with a
numerical value. This has not been specified
according to WSDL.

Table 14: Error codes for OCIT-C data receiver pull

 50

7 DATEX II v3
In contrast to DATEX II v2 Exchange, data transport in DATEX II v3 Exchange 2020 takes place via a

MessageContainer structure. Since not all elements of this structure that are possible according to the

DATEX II v3 specification are used in the Mobilithek, we speak here of a minimum MessageContainer.

In addition to a payload element, this must also contain an <exchangeInformation> element. The

minimal MessageContainer as well as the <exchangeInformation> element are available under

[DATEXIIv3Exc] available.

The <exchangeInformation> element consists of two data structures with the following mandatory

attributes:

▪ <exchangeContext>:

▪ <codedExchangeprotocol>: An attribute of an enumeration type. The value differs

depending on the protocol used (see also chapter 4.5.2):

▪ For SOAP interfaces, either "snapshotPull", "snapshotPush", "deltaPull" or

"deltaPush" is used here.

▪ For HTTP pull, "snapshotPull" or "deltaPull" is used here.

▪ <exchangeSpecificationVersion>: The Mobilithek expects the value "3.0" here.

▪ <supplierOrCisRequester>: To be compliant with the standard, an empty XML element

must be included here.

▪ <dynamicInformation>:

▪ <exchangeStatus>: The value "online" is expected here.

▪ <messageGenerationTimestamp>: current time of message generation.

The <codedExchangeprotocol> element thus indicates whether a DATEX II v3 data packet is a full or a

delta packet. The handling of delta packets is described in chapter 4.3 is described.

In the administration component of the Mobilithek, the data provider can select whether delivery of

delta packages is planned for this publication.

 Important note

If delta packages are delivered for a DATEX II v3 publication, data recipients cannot fetch them
via SOAP using a pull request. SOAP pull requests will always deliver the last complete data
package delivered.

 51

7.1 Notes on handling schemas with Exchange 2020

Exchange 2020 supports the delivery of publications in XML or JSON format. If one wants to set up a

publication for DATEX II v3 content, the data provider must provide several schemas (XML or JSON

schema) on two levels:

1. Content data: DATEX II v3 has introduced the concept of namespaces in DATEX II. When

creating the data profile for a publication, a separate schema is created for each namespace.

Each instance of the publication must reference the entry schema, which is called either

DATEXII_3_D2Payload.[xsd | json] (Level A or B) or LevelC_3_D2Payload.[xsd | json] (Level C),

depending on the compatibility level. This schema imports all other schemas of the respective

data profile.

2. Protocol data: To transport DATEX II v3 content with the corresponding DATEX II Exchange

2020 specification, the content data schema is embedded in three additional schemas for the

options implemented on the Mobilithek: MessageContainer.[xsd | json],

InformationManagement.[xsd | json] and ExchangeInformation.[xsd | json].

The protocol data schemas have been profiled for use in the context of the Mobilithek. It is important

to note that the schema of the DATEX II MessageContainer object is where the protocol data is linked

to the content data. This schema must therefore be adapted depending on whether Level A or B

content is to be transported, or Level C content. The procedure is described below for both cases:

7.1.1 DATEX II v3 Level A or B

When generating the Schemas of the publication's data profile, several schemas are generated. The

schema to be embedded in each instance of the publication is called DATEXII_3_D2Payload.[xsd | json].

In XML it defines the namespace http://datex2.eu/schema/3/d2Payload. The data provider must

upload these content data schemas together with the variant of ExchangeInformation.[xsd | json] as

well as MessageContainer.[xsd | json] for Level A and B in the user interface to his publication

[DATEXIIv3Exc].

7.1.2 DATEX II v3 Level C

When generating the Schemas of the publication's data profile, several schemas are generated. The

schema to be embedded in the instances of the publication is called LevelC_3_D2Payload.[xsd | json]

and defines in XML the namespace http://levelC/schema/3/d2Payload. The data provider must upload

these content data schemas together with the variant of ExchangeInformation.[xsd | json] as well as

MessageContainer.[xsd | json] for Level C in the user interface to his publication [DATEXIIv3Exc].

 52

Important note

DATEX II v3 content on the Mobilithek must always be based on an entry element derived from
the abstract class PayloadPublication in the DATEX II v3 package Common. This is independent
of which compatibility level is used, as the Exchange 2020 MessageContainer expects such an
object.

The schema generated from the associated DATEX II Package Common must always be part of
the content data schemas, i.e. either DATEXII_3_Common.[xsd | json] (Level A or B) or
LevelC_3_Common.[xsd | json] (Level C).

Users aiming for a Level C publication with a different structure will need to make appropriate
manual adjustments at schema level. If necessary, they should contact Mobilithek Support for
assistance.

For technical reasons, referenced subschemas in JSON must start with the file: prefix. For
example:

"$ref": "file:LevelC_3_Common.json#/definitions/_ExtensionType"

 53

7.2 SOAP interface

7.2.1 Data provider side

7.2.1.1 Client Pull SOAP

In the Client Pull SOAP exchange procedure, the Mobilithek broker system requests the data provider

system to deliver its data to the Mobilithek.

Providing a web service

The data provider system must offer a web service that is defined based on the DATEX II Snapshot Pull

WSDL [DATEXIIv3Pull]. As input nothing is expected, as output the broker system of the mobile library

expects the requested data in a MessageContainer in DATEX II format according to the minimum

MessageContainer profile in the schema MessageContainer.xsd [DATEXIIv3Exc].

It is the responsibility of the data provider to define the mandatory <exchangeInformation> element

with its <exchangeContext> and <dynamicInformation> elements. In order to provide the data in a

standard-compliant manner, it should be noted that the <codedExchangeProtocol> element is set to

the value

▪ "snapshotPull" for a complete data package

▪ "deltaPull" for a delta data package

 is to be set.

Irrespective of this, the Mobilithek replaces the <codedExchangeProtocol> element with the respective

value corresponding to the delivery protocol (see chapter 4.5.2), in order to enable standard-compliant

data receiver systems to process the data correctly. Following the hint in chapter 4 the broker system

only carries out necessary validations of the response. In order for the data packet to be accepted by

the mobile library, it must have a valid XML format and the <codedExchangeProtocol> element

specified above must be assigned a valid value.

Via the administration component of the Mobilithek, the data provider must store the URL of his

service end point in the publication configuration at which the Mobilithek is to retrieve the data

package.

Calling a web service

The broker system of the Mobilithek provides a web service client defined based on the DATEX II

Snapshot Pull WSDL [DATEXIIv3Pull] for calling web services. This web service must return data

according to the schema MessageContainer.xsd [DATEXIIv3Exc] schema.

If there is no data packet for a delivery in the data provider system, the broker system of the Mobilithek

expects the following response:

▪ HTTP Response Code 200 Ok

 54

▪ a minimal MessageContainer element without payload

Example response:

<?xml version="1.0"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <con:messageContainer xmlns:con="http://datex2.eu/schema/3/messageContainer"

 xmlns:ex="http://datex2.eu/schema/3/exchangeInformation"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="<URL des Schema Files>"

 modelBaseVersion="3">

 <con:exchangeInformation modelBaseVersion="3">

 <ex:exchangeContext>

 <ex:codedExchangeProtocol>snapshotPull</ex:codedExchangeProtocol>

 <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion>

 <ex:supplierOrCisRequester/>

 </ex:exchangeContext>

 <ex:dynamicInformation>

 <ex:exchangeStatus>online</ex:exchangeStatus>

 <ex:messageGenerationTimestamp>%TIMESTAMP%</ex:messageGenerationTimestamp>

 </ex:dynamicInformation>

 </con:exchangeInformation>

 </con:messageContainer>

 </soapenv:Body>

</soapenv:Envelope>

The broker system identifies the data provider systems that have subscribed to a pull procedure and

the associated service endpoints in the metadata directory and calls them cyclically according to the

configured publication frequency. The data received after the call are temporarily stored in

corresponding packet buffers for delivery to potential data receivers. If the delivered data package is a

complete package, all data packages in the package buffer are replaced. A delta packet is appended to

the list of data packets in the packet buffer.

7.2.1.2 Publisher Push SOAP

With the Publisher Push exchange procedure, the data provider system must deliver the data to the

Mobilithek on its own. A corresponding SOAP interface must be used. Whether the data is generated

based on an event (on occurrence) or periodically (periodic) and delivered to the Mobilithek is irrelevant

for the functioning of the Mobilithek broker system. The exchange mechanism is identical in both

cases.

 55

Providing a web service

The broker system of the Mobilithek offers a web service that is defined based on the specification

DATEX II Snapshot Push WSDL [DATEXIIv3Push] specification. The data to be transferred is expected

as input in a MessageContainer instance in the body element of the SOAP envelope.

It is the responsibility of the data provider to define the mandatory <exchangeInformation> element

with its <exchangeContext> and <dynamicInformation> elements. In order to provide the data in a

standard-compliant manner, it should be noted that the <codedExchangeProtocol> element is set to

the value

▪ "snapshotPull" for a complete data package

▪ "deltaPull" for a delta data package

is to be set.

Irrespective of this, the Mobilithek replaces the <codedExchangeProtocol> element with the value

corresponding to the delivery protocol (see chapter 4.5.2), in order to enable standard-compliant data

receiver systems to process the data correctly.

In the URL of the service end point at the broker system, the ID of the publication is entered in which

the data packets are to be placed.

The URL is structured as follows:

https://mobilithek.info:8443/mobilithek/api/v1.0/publication/soap/datexv3/<publication

ID>/snapshotPushService

 56

Example:

<?xml version="1.0"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <con:messageContainer xmlns:con="http://datex2.eu/schema/3/messageContainer"

 xmlns:ex="http://datex2.eu/schema/3/exchangeInformation"

 xmlns:d2="http://datex2.eu/schema/3/d2Payload"

 xmlns:loc="http://datex2.eu/schema/3/locationReferencing"

 xmlns:com="http://datex2.eu/schema/3/common"

 xmlns:sit="http://datex2.eu/schema/3/situation"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="<URL des Schema Files>"

 modelBaseVersion="3">

 <con:payload lang="en"

 xsi:type="sit:SituationPublication"

 modelBaseVersion="3">

 ...

 </con:payload>

 <con:exchangeInformation modelBaseVersion="3">

 <ex:exchangeContext>

 <ex:codedExchangeProtocol>snapshotPush</ex:codedExchangeProtocol>

 <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion>

 <ex:supplierOrCisRequester/>

 </ex:exchangeContext>

 <ex:dynamicInformation>

 <ex:exchangeStatus>online</ex:exchangeStatus>

 <ex:messageGenerationTimestamp>2021-07-21T13:00:00

 </ex:messageGenerationTimestamp>

 </ex:dynamicInformation>

 </con:exchangeInformation>

 </con:messageContainer>

 </soapenv:Body>

</soapenv:Envelope>

Calling the web service

The data provider system must provide a web service client defined based on the DATEX II Snapshot

Push WSDL [DATEXIIv3Push] to call the web service. The web service must deliver the data to the

publication-specific service endpoint of the broker system of the mobile library. The broker system

accepts this data and stores it in a packet buffer. If the delivered data package is a complete package,

all data packages in the package buffer are replaced. A delta packet is appended to the list of data

packets in the packet buffer.

 57

A successful delivery is answered by the Mobilithek with a response in the form of a DATEX II

ExchangeInformation with the positive returnStatus "ack" according to the schema definition in

ExchangeInformation.xsd [DATEXIIv3Exc].

Example:

<ex:putSnapshotDataOutput xmlns:ex="http://datex2.eu/schema/3/exchangeInformation"

 xmlns:com="http://datex2.eu/schema/3/common"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://datex2.eu/schema/3/exchangeInformation <URL of schema

file>"

 modelBaseVersion="3">

 <ex:exchangeContext>

 <ex:codedExchangeProtocol>snapshotPush</ex:codedExchangeProtocol>

 <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion>

 <ex:supplierOrCisRequester></ex:supplierOrCisRequester>

 </ex:exchangeContext>

 <ex:dynamicInformation>

 <ex:exchangeStatus>online</ex:exchangeStatus>

 <ex:messageGenerationTimestamp>2021-08-

06T15:49:33.600+02:00</ex:messageGenerationTimestamp>

 <ex:returnInformation>

 <ex:returnStatus>ack</ex:returnStatus>

 </ex:returnInformation>

 </ex:dynamicInformation>

</ex:putSnapshotDataOutput>

However, the Mobilithek responds to a faulty delivery with a response in the form of a DATEX II

ExchangeInformation with the negative return status "fail" according to the schema definition in

ExchangeInformation.xsd [DATEXIIv3Exc]e.g. if the publication is not configured for the SOAP push

procedure. In the response, the following values are used for the <codedInvalidityReason> element:

▪ invalidPayload if no publication was found for the specified ID.

▪ invalidMessage if the SOAP request could not be unpacked correctly.

 58

Example:

<ex:putSnapshotDataOutput xmlns:ex="http://datex2.eu/schema/3/exchangeInformation"

 xmlns:com="http://datex2.eu/schema/3/common"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://datex2.eu/schema/3/exchangeInformation <URL of schema

file>"

 modelBaseVersion="3">

 <ex:exchangeContext>

 <ex:codedExchangeProtocol>snapshotPush</ex:codedExchangeProtocol>

 <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion>

 <ex:supplierOrCisRequester></ex:supplierOrCisRequester>

 </ex:exchangeContext>

 <ex:dynamicInformation>

 <ex:exchangeStatus>online</ex:exchangeStatus>

 <ex:messageGenerationTimestamp>2021-08-06T15:49:33.600+02:00

 </ex:messageGenerationTimestamp>

 <ex:returnInformation>

 <ex:returnStatus>fail</ex:returnStatus>

 <ex:codedInvalidityReason>invalidPayload</ex:codedInvalidityReason>

 </ex:returnInformation>

 </ex:dynamicInformation>

</ex:putSnapshotDataOutput>

Error codes

HTTP
Response
Code

SOAP Response Description

200

returnStatus: fail
codedInvalidityReason:invalidMessage

Invalid XML or invalid SOAP request; error
when unpacking the request, or

The publication is not a DATEX II V3
publication or the protocol specified by the
data provider is not PUSH SOAP.

returnStatus: fail codedInvalidityReason:
invalidPayload

The <codedExchangeProtocol> element was
not specified according to WSDL or does not
contain the value "snapshotPush" or
"deltaPush", or

the publication ID does not exist

400 empty body The specified publication ID is not numeric.

403 empty body The user assigned to the machine account is
not authorised to provide data for the
specified publication.

404 empty body No publication ID specified

Table 15: Error Codes for DATEX2 V3 Publisher Push SOAP

 59

7.2.2 Data recipient side

7.2.2.1 Client Pull SOAP

In the client pull SOAP exchange method, the data receiver system must request the mobile library to

send data to the data receiver system.

Providing a web service

The broker system of the Mobilithek offers a web service that is defined based on the specification

[DATEXIIv3Pull]. The subscription ID is expected as input in the URL, and the data recipient receives

the requested data as output in the payload element of a message container in DATEX II Exchange

2020 format. Based on the transmitted subscription ID, the mobile library can determine the associated

packet buffer and the data packet.

 Important note

▪ If the packet buffer does not contain a data packet at the time of the request, the
Mobilithek responds to the request with a MessageContainer without a payload element.
(cf. Calling a web service)

▪ Even if delta packets are submitted for publication by the data provider, the SOAP request
always returns only the last complete data packet submitted.

▪ If the data provider has submitted the data to the Mobilithek via the HTTPS interface, it is
possible that the data does not have a MessageContainer. This data cannot be retrieved
via the SOAP interface as a data recipient and is answered by the Mobilithek with a 500
response code.

Calling the web service

The data receiving system must provide a web service client to [DATEXIIv3Pull] specification to call

the web service. The corresponding subscription ID must be included in the URL as an input parameter.

The SOAP endpoint of the broker system is:

https://mobilithek.info:8443/mobilithek/api/v1.0/subscription/soap/datexv3?subscriptionId=<

Subskription-ID>

 60

Example:

<?xml version='1.0'?>

<soapenv:Envelope xmlns:soapenv='http://schemas.xmlsoap.org/soap/envelope/'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'

 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'>

 <soapenv:Body>

 <con:messageContainer xmlns:con='http://datex2.eu/schema/3/messageContainer'

 xmlns:ex='http://datex2.eu/schema/3/exchangeInformation'

 xmlns:d2='http://datex2.eu/schema/3/d2Payload'

 xmlns:loc='http://datex2.eu/schema/3/locationReferencing'

 xmlns:com='http://datex2.eu/schema/3/common'

 xmlns:sit='http://datex2.eu/schema/3/situation'

 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'

 xsi:schemaLocation='http://datex2.eu/schema/3/messageContainer <URL des

Schema Files>'

 modelBaseVersion='3'>

 <con:payload lang='en'

 xsi:type='sit:SituationPublication'

 modelBaseVersion='3'>

 ...

 </con:payload>

 <con:exchangeInformation modelBaseVersion='3'>

 <ex:exchangeContext>

 <ex:codedExchangeProtocol>snapshotPull</ex:codedExchangeProtocol>

 <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion>

 <ex:supplierOrCisRequester/>

 </ex:exchangeContext>

 <ex:dynamicInformation>

 <ex:exchangeStatus>online</ex:exchangeStatus>

 <ex:messageGenerationTimestamp>2021-07-21T13:00:00

 </ex:messageGenerationTimestamp>

 </ex:dynamicInformation>

 </con:exchangeInformation>

 </con:messageContainer>

 </soapenv:Body>

</soapenv:Envelope>

 61

Error codes

HTTP

Response Code

SOAP Response Description

200 DATEX2 V3 Response without
<payload> element

The associated packet buffer does not contain a data
packet

405 empty body The parameter ? subscriptionId= was not specified or
no value was specified for the parameter.

406 empty body In the accept-encoding header, gzip is missing as an
accepted encoding.

500 faultcode: Client

faultstring: Contract can not be
found, is not active or not
available for provided orgId

The user assigned to the machine account is not
authorised to obtain data under this subscription or
the specified subscription does not exist.

faultcode:Client

faultstring: invalid - XML

Invalid XML or invalid SOAP request

faultcode:Client

faultString: Offer validation not
passed reason: Access protocol,
data model don't match

The publication associated with the subscription is
not a DATEX2 V3 publication.

Table 16: Error codes for data receiver DATEX II V3 Pull SOAP

7.2.2.2 Publisher Push SOAP

In the Publisher Push exchange procedure, the broker system of the Mobilithek delivers the data to

the data recipient systems on its own. A corresponding SOAP interface is used for this. Whether the

data is generated because of an event (on occurrence) or periodically (periodic) and delivered to the

Mobilithek is irrelevant, the mechanism for delivery to the data recipient is identical.

Providing a web service

The data receiving system must offer a web service that is defined based on the specification

[DATEXIIv3Push]. As input, the Mobilithek sends a MessageContainer with the requested data in the

body element, as response the Mobilithek expects a DATEX II ExchangeInformation with a positive

returnStatus "ack" according to the schema definition in ExchangeInformation.xsd [DATEXIIv3Exc].

Calling the web service

The Mobilithek provides a web service client, defined based on [DATEXIIv3Push] defined web service

client for calling the data receiver web services. Via the Mobilithek administration component, the data

subscriber must store his service endpoint in the subscription configuration.

The broker system identifies these data recipient systems and starts a corresponding web service call.

 62

If the transfer of the data could be completed successfully, the broker system expects a corresponding

confirmation message from the data receiver system:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <ex:putSnapshotDataOutput xmlns:ex="http://datex2.eu/schema/3/exchangeInformation"

 xmlns:com="http://datex2.eu/schema/3/common"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="<URL des Schema Files>"

 modelBaseVersion="3">

 <ex:exchangeContext>

 <ex:codedExchangeProtocol>snapshotPush</ex:codedExchangeProtocol>

 <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion>

 <ex:supplierOrCisRequester></ex:supplierOrCisRequester>

 </ex:exchangeContext>

 <ex:dynamicInformation>

 <ex:exchangeStatus>online</ex:exchangeStatus>

 <ex:messageGenerationTimestamp>2021-08-06T15:49:33.600+02:00

 </ex:messageGenerationTimestamp>

 <ex:returnInformation>

 <ex:returnStatus>ack</ex:returnStatus>

 </ex:returnInformation>

 </ex:dynamicInformation>

 </ex:putSnapshotDataOutput>

 </soapenv:Body>

</soapenv:Envelope>

Synchronisation

A data receiver system can cause the Mobilithek to resend data packets. This can be particularly useful,

in the context of publications that support delta deliveries, to synchronise to the current state of the

Mobilithek data package buffer after a data receiver system start and not have to wait for the next

delivery of a complete data package.

If the Mobilithek receives a confirmation message with the return status

"snapshotSynchronisationRequest" in response to a data transmission, the Mobilithek will retransmit

all data packets contained in the data packet buffer to the data receiver system in the order in which

they were received. The following shows a confirmation message that initiates a synchronisation.

 63

<ex:putSnapshotDataOutput xmlns:ex="http://datex2.eu/schema/3/exchangeInformation"

 xmlns:com="http://datex2.eu/schema/3/common"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://datex2.eu/schema/3/

 exchangeInformation <URL of schema file>"

 modelBaseVersion="3">

 <ex:exchangeContext>

 <ex:codedExchangeProtocol>snapshotPush</ex:codedExchangeProtocol>

 <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion>

 <ex:supplierOrCisRequester></ex:supplierOrCisRequester>

 </ex:exchangeContext>

 <ex:dynamicInformation>

 <ex:exchangeStatus>online</ex:exchangeStatus>

 <ex:messageGenerationTimestamp>2021-08-06T15:49:33.600+02:00

 </ex:messageGenerationTimestamp>

 <ex:returnInformation>

 <ex:returnStatus>snapshotSynchronisationRequest</ex:returnStatus>
 </ex:returnInformation>

 </ex:dynamicInformation>

</ex:putSnapshotDataOutput>

7.3 HTTPS interface

7.3.1 Data provider side

7.3.1.1 Client Pull HTTPS

In the client pull exchange procedure, the broker system of the Mobilithek cyclically requests the data

provider system to deliver its data to the Mobilithek. The time interval used must be configured when

configuring the data offering in the metadata directory. For this exchange, the rules of the snapshot

pull from the [DATEXIIv3Annex] Appendix C - "Snapshot Pull with simple http server" profile definition.

It should be noted that the other optional rules do not apply. The options for authentication

([DATEXIIv3Annex] Appendix C - "Snapshot Pull with simple http server" profile definition,

Authentication) do not apply as they are obsolete when using the HTTPS procedure which is mandatory

for the Mobilithek. See also Appendix B - DATEX II HTTP Protocol Support.

Request to the data provider

The Mobilithek broker system sends an HTTPS GET request to the data provider system from which

the data is to be fetched. The Mobilithek is able to identify data provider systems that have subscribed

to a pull procedure and send requests to them at defined intervals.

The data provider must store the publication-specific server URL in the publication configuration via

the administration component of the Mobilithek. The URL must be stored in full by the data provider.

The Mobilithek does not add parameters to it, such as the publication ID.

 64

Please also note the instructions in chapter 4.8 “Use of the "If-Modified-Since" header field”.

Response to the Mobilithek

After receiving the request, the data provider system must generate an HTTPS response whose

message body consists of the requested DATEX II v3 data. A MessageContainer object is expected here

that meets the minimum profile of the MessageContainer.xsd [DATEXIIv3Exc] is met. According to

[DATEXIIv3Annex] Appendix C - "Snapshot Pull with simple http server" profile definition, Basic request

/ response pattern, the response must be in the content type "text/xml; charset=utf-8" and can be

delivered GZIP-encoded.

The Mobilithek's broker system accepts this data and stores it in a packet buffer. If the delivered data

package is a complete package, all data packages in the package buffer are replaced. A delta packet is

appended to the list of data packets in the packet buffer.

Example:

<?xml version='1.0'?>

<con:messageContainer xmlns:con='http://datex2.eu/schema/3/messageContainer'

 xmlns:ex='http://datex2.eu/schema/3/exchangeInformation'

 xmlns:d2='http://datex2.eu/schema/3/d2Payload'

 xmlns:loc='http://datex2.eu/schema/3/locationReferencing'

 xmlns:com='http://datex2.eu/schema/3/common'

 xmlns:sit='http://datex2.eu/schema/3/situation'

 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'

 xsi:schemaLocation='http://datex2.eu/schema/3/messageContainer <URL of schema

file>'

 modelBaseVersion='3'>

 <con:payload lang='en'

 xsi:type='sit:SituationPublication'

 modelBaseVersion='3'>

 ...

 </con:payload>

 <con:exchangeInformation modelBaseVersion='3'>

 <ex:exchangeContext>

 <ex:codedExchangeProtocol>snapshotPull</ex:codedExchangeProtocol>

 <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion>

 <ex:supplierOrCisRequester/>

 </ex:exchangeContext>

 <ex:dynamicInformation>

 <ex:exchangeStatus>online</ex:exchangeStatus>

 <ex:messageGenerationTimestamp>2021-07-21T13:00:00

 </ex:messageGenerationTimestamp>

 </ex:dynamicInformation>

 </con:exchangeInformation>

</con:messageContainer>

 65

7.3.1.2 Publisher Push HTTPS

The data provider system must send a data packet for a publication to the Mobilithek broker system.

Request to the Mobilithek broker system

The data provider system must send an HTTPS POST request with a message in the HTTP request

body to the Mobilithek broker system.

The publication ID must be specified as a path element in the URL. The user data is passed in the HTTP

request body.

The Content-Type header to be sent depends on the syntax to which the corresponding data offer is

set.

It is the responsibility of the data provider to define the mandatory <exchangeInformation> element

with its <exchangeContext> and <dynamicInformation> elements if it is a delta delivery. In order to

provide the data in a standard compliant way, it should be noted that the <codedExchangeProtocol>

element must be set to the value.

• "snapshotPull" for a complete data packet

• "deltaPull" for a delta data packet

 should be set. This requires the data packet to be in a valid XML format (or JSON format if the data

offer has been set with the JSON syntax). If the data offer does not specify a delta delivery, it will not

check for the existence or content of the <codedExchangeProtocol> element.

Regardless, Mobilithek replaces the <codedExchangeProtocol> element with the value appropriate to

the delivery protocol in each case (see Chapter 4.5.2) to allow standards-compliant data taker systems

to process it correctly. Following the hint in chapter 4, the broker system only performs necessary

validations of the response.

The URL of the broker system is structured as follows:

https://mobilithek.info:8443/mobilithek/api/v1.0/publication/datexv3/<publicationID>/snapSh

otPushService

Response to the Data provider

The data provider system receives an HTTPS response to the request. The message body is empty; the

standard HTTP status codes [HTTP/1.1] can occur as status codes, whereby the meanings in Table 25

apply.

 66

Description

Request Request POST
/mobilithek/api/v1.0/publication/datexv3/<publicationID>/snapShotPushService

HTTP/1.1

Host: mobilithek.info

Content-Type: text/xml oder application/xml or application/json

Accept-Encoding: gzip

Response Response HTTP/1.1 200 OK

Statuscodes Standard HTTP1.1 Statuscodes [HTTP/1.1]

The following Statuscodes have a special meaning:

▪ 400: The specified publication parameter is not numeric or the request is not
structured correctly.

▪ 404: Publication parameter could not be assigned, the publication is no longer
valid, or no value was specified after the slash in the URL path.

▪ 403: The user is not authorized to submit data via this endpoint for the specified
publication or the publication has not been configured for delivery via HTTPS.

▪ 422: For an offering that supports delta delivery, no valid value was passed for the
codedExchangeProtocol element or the syntax of the message passed in invalid.

Table 17: Request/Response between Provider System/Mobilithek during Publisher Push DatexIIv 3 HTTPS

 67

7.3.2 Data recipient side

7.3.2.1 Client Pull HTTPS

In the client pull exchange procedure, the data receiving system must request the mobile library to

transmit the data.

Request to the Mobilithek

The data receiver system is to send an HTTPS GET request to the Mobilithek. Based on the subscription

ID, the associated packet buffer as well as the data packet is determined. Alternatively, an HTTPS POST

request can be used.

The URL of the broker system for XML based publications is structured as follows:

https://mobilithek.info:8443/mobilithek/api/v1.0/subscription/datexv3?subscriptionID=<Subsk

ription-ID>

The URL of the broker system for JSON based publications is structured as follows:

https://mobilithek.info:8443/mobilithek/api/v1.0/subscription?subscriptionID=<Subscriptions

-Id>

Please also note the instructions in chapter 4.8 “Use of the "If-Modified-Since" header field”.

Response to the data recipient

The broker system of the Mobilithek generates an HTTPS response after receiving the request. For this

purpose, the corresponding packet buffer and the appropriate data packet are determined based on

the subscription ID. The content of the data packet is transmitted to the data recipient in the body of

the response. According to the DATEX II Client Snapshot Pull Profile ([DATEXIIv2PSM], Appendix C -

"Snapshot Pull with simple http server" profile definition, Overall presentation), the content is always

delivered with a MessageContainer instance. In addition, the response has the content type "text/xml;

charset=utf-8" resp. "application/json; charset=utf-8" and is - in deviation from the standard -

exclusively sent in GZIP compressed form. Requests with the "identity encoding" or other

compression formats are acknowledged with the error code HTTP 406 (Not Acceptable).

Status codes can be the standard HTTP status codes [HTTP/1.1] can occur as status codes, whereby

the Table 18 described meanings apply:

 68

Description

Request Request GET
/mobilithek/api/v1.0/subscription/datexv3?subscriptionID=2000000 HTTP/1.1

Host: mobilithek.info

Accept-Encoding: gzip

Response Response HTTP/1.1 200 OK

Content-Type: text/xml

Content-Length: xx

<messageContainer >

...

</messageContainer>

Status codes Standard HTTP1.1 Status Codes [HTTP/1.1]

The following status codes have a special meaning:

▪ 204: No data packet in the packet buffer for subscription

▪ 304: No data packet in the packet buffer that is younger than the timestamp in the "if-
modified-since" header.

▪ 400: No subscription parameter specified in the request or missing Accept-Encoding
header.

▪ 403: The user is not authorised to retrieve this subscription via this endpoint or it is not
a DATEX2 V3 publication associated with this subscription.

▪ 404: Subscription parameter is not numeric or subscription is no longer valid or does
not exist.

▪ 406: gzip not specified in the "Accept-Encoding" request header.

▪ 503: Service Unavailable (e.g. during maintenance)

Table 18 : Request/Response between Mobilithek/Data Recipient System on Client Pull HTTPS

 69

8 Container

8.1 SOAP interface

8.1.1 Data provider side

8.1.1.1 Client Pull SOAP

In the client pull SOAP exchange procedure, the broker system of the Mobilithek cyclically requests

the data provider system to deliver its data to the Mobilithek. The time interval used must be

configured when configuring the data offering in the metadata directory.

Providing a web service

The data provider system must offer a web service with the method pullContainerDataBroker, which

expects as input the parameters publication ID (type publicationId) and an optional timestamp (type

timestamp) with a creation date according to the elements of the container model schema.

Via the administration component of the Mobilithek, the data provider must store the service endpoint

in the URL attribute of the publication configuration. The Mobilithek broker system assumes that the

data packets submitted by the data provider system for the specified URL belong to the configured

publication, regardless of the publication ID in the SOAP request.

The data provider system must generate and return a data package (type containerdata) in container

format. Following the hint in chapter 4 the Mobilithek broker system accepts all data packets, provided

they have a valid XML structure.

 Important note

The administration component of the Mobilithek makes it possible to test the accessibility of
the specified URL of the data provider. Since this is possible at a time when the publication ID
is not yet known in the Mobilithek, the Mobilithek will execute this test request with a random
ID. The data provider system must therefore generate a valid data packet regardless of the
publication ID contained in the request.

Calling a web service

The broker system of the Mobilithek provides a web service client defined according to the container

format specification [MCS] for calling web services.

The broker system identifies the data provider systems that have subscribed to a pull procedure and

the associated service endpoint in the metadata directory and calls them cyclically according to the

configured publication frequency. The data received after the call are temporarily stored in

corresponding packet buffers for delivery to potential data receivers. Any previous data package that

may still exist is replaced in the process.

 70

8.1.1.2 Publisher Push SOAP (Container)

With the Publisher Push exchange procedure, the data provider system must deliver the data to the

Mobilithek on its own. A corresponding SOAP interface must be used. Whether the data is generated

because of an event (on occurrence) or periodically (periodic) and delivered to the Mobilithek is

irrelevant for the functioning of the Mobilithek. The exchange mechanism is identical in both cases.

Providing a web service

The broker system of the Mobilithek offers a web service with the method pushContainerData, which

expects the data structure of the container format filled with the publication ID in the header element

and a data package in the body element as input and returns a status message as output. An object of

the type containerdata is expected in each case.

Example:

<?xml version='1.0' encoding='UTF-8'?>

<soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <ns3:container xmlns="https://www.w3.org/2000/09/xmldsig#"

 xmlns:ns2="https://schemas.xmlsoap.org/ws/2002/07/utility"

 xmlns:ns3="https://ws.bast.de/container/TrafficDataService">

 <ns3:header>

 <ns3:Identifier>

 <ns3:publicationId>12345</ns3:publicationId>

 </ns3:Identifier>

 </ns3:header>

 <ns3:body>

 <ns3:binary id="test-id-bin" type="hexBinary">dGVzdC10ZXh0.</ns3:binary>

 <ns3:xmlschema="test-schema" id="test-id-xml"/>

 </ns3:body>

 </ns3:container>

 </soapenv:Body>

</soapenv:Envelope>

Calling the web service

The data provider system must provide a web service client according to the container format

specification [MCS] to call the web service.

The SOAP endpoint of the broker system is:

https://mobilithek.info:8443/mobilithek/api/v1.0/publication/soap/container

 71

Error codes

HTTP Response
Code

SOAP Response Description

500 SOAP Fault

faultcode: Client

faultstring: invalid - XML

Invalid XML or invalid SOAP request

SOAP Fault

faultcode: Client

faultstring: SOAP action cannot
be determined

Multiple SOAP methods identified in the request, or

the first element in the SOAP body is not the
supported SOAP method: <container>.

SOAP Fault

faultcode: Client

faultstring: numeric
publicationID expected, found
non-numeric publicationId

The specified publication ID is not numeric

SOAP Fault

faultcode: Client

faultstring: tag <publicationID>
expected according to WDSL,
element not found

<publicationID> Element not found in the request.

SOAP Fault

faultCode: Client

faultString = publicationId for
this organisation not found

The user assigned to the machine account is not
authorised to provide data for the specified
publication, or

the specified publication does not exist, or

The HTTPS SOAP delivery protocol was not selected
for the specified publication.

Table 19: Error codes for SOAP Container Publisher Push

 72

8.1.2 Data recipient side

8.1.2.1 Client Pull SOAP

In the client pull SOAP exchange method, the data receiver system must request the mobile library to

send data to the data receiver system.

Providing a web service

The broker system of the Mobilithek offers a web service with the method pullContainerDataClient,

which expects a subscription ID (type subscriptionId) in the XML data and an optional timestamp (type

timestamp - contains the creation time of the request) as input. The data is returned in container format

(type containerdata) as output.

Example:

<?xml version='1.0' encoding='UTF-8'?>

<soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <ns3:pullContainerDataClientRequestEl

 xmlns="https://www.w3.org/2000/09/xmldsig#"

 xmlns:ns2="https://schemas.xmlsoap.org/ws/2002/07/utility"

 xmlns:ns3="https://ws.bast.de/container/TrafficDataService">

 <ns3:subscriptionId>2000000</ns3:subscriptionId>

 </ns3:pullContainerDataClientRequestEl>

 </soapenv:Body>

</soapenv:Envelope>

Calling the web service

The data receiving system must provide a web service client according to the container format

specification [MCS] for calling the web service.

The SOAP endpoint of the broker system is:

https://mobilithek.info:8443/mobilithek/api/v1.0/subscription/soap/container

Error codes

HTTP

Response Code

SOAP Response Description

500 SOAP Fault

faultcode: Client

faultstring: invalid - XML

Invalid XML or invalid SOAP request

SOAP Fault

faultcode: Client

Multiple SOAP methods identified in the request, or

 73

HTTP

Response Code

SOAP Response Description

faultstring: SOAP action cannot
be determined

the first element in the SOAP body is not the
supported SOAP method:
<pullContainerDataClientRequestEl>.

SOAP Fault

faultcode: Client

faultstring: Expected to find
numerical value in subscriptionId,
found non-numeric

The specified subscription ID is not numeric

SOAP Fault

faultcode: Client

faultstring: Expected to find
element subscriptionId in
request, but did not find

<subscriptionID> element not found in the request.

SOAP Fault

faultCode: Client

faultString: Accessible
subscriptionId for organisation
not found

The user assigned to the machine account is not
authorised to obtain data for the specified
subscription, or

the specified subscription does not exist, or

the specified subscription is not a container
publication

SOAP Fault

faultCode: Server

faultString: No data package
available

No data packet available in the packet buffer

400 empty body Request faulty, e.g. "Accept-Encoding" header
missing

406 empty body gzip not specified in the "Accept-Encoding" request
header.

Table 20: Error codes for SOAP Container Consumer Pull

8.1.2.2 Publisher Push SOAP

In the Publisher Push exchange procedure, the Mobilithek delivers the data to the data recipient

systems on its own. A corresponding SOAP interface is used for this. Whether the data is generated

because of an event (on occurrence) or periodically (periodic) and delivered to the Mobilithek is

irrelevant, the mechanism for delivery to the data recipient is identical.

 74

Providing a web service

The data receiver system must offer a web service with the method pushContainerData, which is

defined based on the container format specification [MCS]. A data packet of the container format type

(type containerdata) must be accepted as input and a status message (also of type containerdata) must

be delivered as output.

Calling the web service

The broker system of the Mobilithek provides a web service client defined based on the container

format specification [MCS] for calling up the data recipient web services. Via the administration

component of the Mobilithek, the data recipient must store his service endpoint in the URL attribute

of the subscription configuration.

The broker system identifies these data recipient systems and starts a corresponding web service call.

If the transfer of the data could be completed successfully, the broker system expects a corresponding

status message from the data receiver system.

If the data receiving system does not acknowledge the transmission as successful, the transmission is

repeated according to chapter 4.7.2 the transmission is repeated.

If the data receiving system is technically not accessible, HTTP requests are sent to the service end

point extended by the suffix "? wsdl". Only when this HTTP request is acknowledged with a status of

200 will the data recipient system be supplied again.

 75

8.2 HTTPS interface

8.2.1 Data provider side

8.2.1.1 Client Pull HTTPS

The Mobilithek broker system cyclically requests the data provider system to deliver a data package

for a publication to the Mobilithek. The time interval used must be configured when configuring the

data offering in the metadata directory.

Request to the data provider

The broker system sends an HTTPS GET request to the data provider system. The broker system uses

the URL stored in the publication description as URL.

Example:

GET <URL according to publication description>

content-type: text/plain

accept-encoding: gzip

The URL must be stored in full by the data provider. Mobilithek does not add parameters to this, such

as the publication ID.

Response to Mobilithek

The data provider system must respond to the request with an HTTPS response. The content type of

the response must be "text/xml" and should be available as GZIP encoding. The Mobilithek can also

process non-compressed content. The message body must consist of the requested data package.

The payload transmitted in the response body is only stored in the broker system of the Mobilithek if

the data provider system responds with a status 200.

See also the notes in Chapter 4.8.1 on using the If-Modified-Since and Last-Modified HTTP headers.

Example:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<container xmlns="https://ws.bast.de/container/TrafficDataService"

 xmlns:ns2="https://schemas.xmlsoap.org/ws/2002/07/utility"

 xmlns:ns3="https://www.w3.org/2000/09/xmldsig#">

 <header>

 <Identifier>

 <publicationId>2053008</publicationId>

 </Identifier>

 </header>

 <body>

 <binary id="test-id-bin" type="hexBinary">

 <![CDATA[]]>

 </binary>

 76

 <xml schema="test-schema" id="test-id-xml">

 </xml>

 </body>

</container>

8.2.1.2 Publisher Push HTTPS

The data provider system must send a data package for a publication to the broker system of the mobile

library.

Request to the broker system of the Mobilithek

The data provider system must send an HTTPS POST request with a message in container format to

the broker system of the mobile library. The publication ID must be passed in the header element and

the user data in the body element of the container message.

The URL of the broker system is structured as follows:

https://mobilithek.info:8443/mobilithek/api/v1.0/publication/container

Example:

<?xml version='1.0' encoding='UTF-8'?>

<ns3:container xmlns="https://www.w3.org/2000/09/xmldsig#"

 xmlns:ns2="https://schemas.xmlsoap.org/ws/2002/07/utility"

 xmlns:ns3="https://ws.bast.de/container/TrafficDataService">

 <ns3:header>

 <ns3:Identifier>

 <ns3:publicationId>12345</ns3:publicationId>

 </ns3:Identifier>

 </ns3:header>

 <ns3:body>

 <ns3:binary id="test-id-bin" type="hexBinary">

 dGVzdC10ZXh0.

 </ns3:binary>

 <ns3:xml schema="test-schema" id="test-id-xml">

 </ns3:xml>

 </ns3:body>

</ns3:container>

Response to the data provider

The data provider system receives an HTTPS response to the request. The message body is empty, the

standard HTTP status codes [HTTP/1.1] can occur as status codes, whereby the meanings described in

Table 21 apply.

 77

Description

Request Request POST /mobilithek/api/v1.0/publication/container

HTTP/1.1

Host: mobilithek.info

Content-Type : application/xml

Accept-Encoding: gzip

<container>

...

</container>

Response Response HTTP/1.1 200 OK

Status codes Standard HTTP1.1 Status Codes [HTTP/1.1]

The following status codes have a special meaning:

▪ 400: No publication parameter, the publication parameter is not numeric or the
request is not structured correctly, e.g. it does not contain valid XML.

▪ 403: The user is not authorised to deliver data via this endpoint for the specified
publication or the publication has not been specified for HTTPS container delivery.

▪ 404: Publication parameter could not be assigned to a valid publication

Table 21 : Request/Response between Data Provider System/Mobile Library at Publisher Push HTTPS

8.2.2 Data recipient side

8.2.2.1 Client Pull HTTPS

In the client pull exchange procedure, the data receiver system must request the broker system of the

mobile library to transmit the data. Which subscription is involved must be specified by a request

parameter.

Request to the Mobilithek

The data receiver system must send an HTTPS GET request to the Mobilithek. The subscription ID to

which a data packet is to be delivered must be transmitted as a parameter.

The URL of the broker system is structured as follows:

https://mobilithek.info:8443/mobilithek/api/v1.0/container/subscription?subscriptionID=<Sub

scription-ID>

See also the notes in Chapter 4.8 “Use of the "If-Modified-Since" header field in the HTTPS protocol”.

Response to the data receiver system

The broker system of the Mobilithek generates an HTTPS response after receiving the request. The

status codes can be the standard HTTP status codes [HTTP/1.1] can occur as status codes, whereby

the meanings described in Table 22 apply as status codes. The content type of the response is

 78

"text/xml" and is sent in GZIP compressed form. The message body of the response consists of the

requested data package.

Description

Request Request GET

/mobilithek/api/v1.0/container/subscription?subscriptionID=2000000 HTTP/1.1

Host: mobilithek.info

Accept-Encoding: gzip

Response Response HTTP/1.1 200 OK

Content-Type: text/xml

Content-Length: xx

<container>

...

</container>

Status codes Standard HTTP1.1 Status Codes [HTTP/1.1]

The following status codes have a special meaning:

▪ 204: No data packet in the packet buffer for subscription.

▪ 304: No data packet in the packet buffer that is younger than the timestamp in the
"if-modified-since" header.

▪ 400: No subscription parameter or missing Accept-Encoding Header

▪ 403: The user is not authorised to retrieve this subscription via this endpoint or the
associated publication is not provided in container format.

▪ 404: No or no longer valid subscription found for the subscription parameter.

▪ 405: The parameter ? subscriptionId= was not specified or no value was specified
for the parameter.

▪ 406: gzip not specified in the "Accept-Encoding" request header.

Table 22 : Request/Response between Mobilithek/Data Recipient System at Client Pull HTTPS

8.2.2.2 Publisher Push HTTPS

The Mobilithek broker system sends a data packet for a subscription to a data receiver system.

Request to the data receiver system

The broker system of the mobile library sends an HTTPS POST request to the data recipient system, in

which the subscription ID in the header element and the user data in the body element of the container

message are passed.

Via the administration component of the Mobilithek, the data recipient must store his URL in the

subscription configuration.

The URL must be stored in full by the data recipient. Mobilithek does not add parameters to it, such as

the subscription ID.

 79

Response to the Mobilithek

The data receiver system must respond to the request with an HTTPS response.

The message body should be empty, the status codes can be the standard HTTP status codes

[HTTP/1.1] can occur as status codes, whereby the meanings described in Table 23 apply as status

codes.

Description

Request Request POST /data delivery HTTP/1.1

Host: datennehmerhost

Content-Type : text/xml

Accept-Encoding: gzip

<container>

...

</container>

Response Response HTTP/1.1 200 OK

Status codes Status Codes Standard HTTP1.1 Status Codes [HTTP/1.1]

Table 23 : Request/response between broker system of the mobile library/data receiver system
at the publisher Push HTTPS

With reference to the explanations in chapter 4.7.2 status codes other than 200 will result in a repeated

attempt to transmit the data packet.

If the data receiving system is technically not accessible, HTTP head requests are sent to the stored

URL. Only when the HTTP head request is acknowledged by the data receiving system with a status of

200 will it be delivered again.

 80

9 Other data formats
The Mobilithek supports the delivery of any data format without the need to pack it into the container

format.

9.1 Data provider side

9.1.1 Client Pull HTTPS

The Mobilithek broker system cyclically requests the data provider system to deliver a data package

for a publication to the Mobilithek. The time interval used must be configured when configuring the

data offering in the metadata directory.

9.1.1.1 Request to the data provider

The broker system sends an HTTPS GET request to the data provider system. The broker system uses

the URL stored in the publication description as URL.

Example:

GET <URL according to publication description>

content-type: text/plain

accept-encoding: gzip

The URL must be stored in full by the data provider. The Mobilithek does not add parameters such as

the publication ID.

9.1.1.2 Response to the Mobilithek

The data provider system must respond to the request with an HTTPS response. The content type of

the response should correspond to the type of the transmitted payload and should be available as GZIP

encoding. Non-compressed content can also be processed by the Mobilithek. Mobilithek does not carry

out any checks regarding the consistency of the specified Content-Type and the transmitted payload.

The message body must consist of the requested data package. The standard HTTP status codes

[HTTP/1.1] are to be used as status codes. The payload transmitted in the response body is only stored

in the broker system of the Mobilithek if the data provider system responds with a status 200.

See also the notes in Chapter 4.8.1 on using the If-Modified-Since and Last-Modified HTTP headers.

 81

Description

Request GET <URL according to publication description>

HTTP/1.1

Host: Data provider host

Accept-Encoding: gzip

Response HTTP/1.1 200 OK

Content-Type: text/csv

Content-Length: xx

[Data package]

Status codes Standard HTTP1.1 Status Codes [HTTP/1.1]

Table 24: Request/response between data provider system/mobile library with client pull HTTPS

9.1.2 Publisher Push HTTPS

The data provider system must send a data package for a publication to the broker system of the mobile

library.

9.1.2.1 Request to the Mobilithek broker system

The data provider system must send an HTTPS POST request with a message in the HTTP request

body to the broker system of the mobile library.

The publication ID must be specified as a path element in the URL. The user data is transferred in the

HTTP request body

The URL of the broker system is structured as follows:

https://mobilithek.info:8443/mobilithek/api/v1.0/publication/<publicationID>

9.1.2.2 Response to the data provider

The data provider system receives an HTTPS response to the request. The message body is empty, the

standard HTTP status codes can occur as status codes [HTTP/1.1] can occur, whereby the meanings in

Table 25 apply.

 82

Description

Request Request POST /mobilithek/api/v1.0/publication/<publicationID>

HTTP/1.1

Host: mobilithek.info

Content-Type: text/csv

Accept-Encoding: gzip

Response Response HTTP/1.1 200 OK

Status codes Standard HTTP1.1 Status Codes [HTTP/1.1]

The following status codes have a special meaning:

▪ 400: The specified publication parameter is not numeric or the request is not
structured correctly.

▪ 404: Publication parameter could not be assigned, the publication is no longer
valid or no value was specified after the slash in the URL path.

▪ 403: The user is not authorised to submit data via this endpoint for the specified
publication or the publication has not been configured for delivery via HTTPS.

Table 25: Request/response between data provider system/mobile library at publisher push HTTPS

9.2 Data recipient side

9.2.1 Client Pull HTTPS

In the client pull exchange procedure, the data receiver system must request the broker system of the

mobile library to transmit the data. Which subscription is involved must be specified by a request

parameter.

Request to the Mobilithek

The data receiver system must send an HTTPS GET request to the Mobilithek. The subscription ID to

which a data packet is to be delivered must be transmitted as a parameter.

The URL of the broker system is structured as follows:

https://mobilithek.info:8443/mobilithek/api/V1.0/subscription?

subscriptionID=<subscriptionId>

See also the notes in Chapter 4.8 “Use of the "If-Modified-Since" header field in the HTTPS protocol”.

Response to the data receiver system

The broker system of the Mobilithek generates an HTTPS response after receiving the request. The

status codes can be the standard HTTP status codes [HTTP/1.1] can occur as status codes, whereby

the meanings described in following Table 26 apply. The content type of the response is of the same

 83

type as delivered by the data provider (in the following table text/csv is assumed) and is sent GZIP-

compressed. The message body of the response consists of the requested data package.

Description

Request Request GET
/mobilithek/api/V1.0/subscription?subscriptionID=2000000 HTTP/1.1

Host: mobilithek.info

Accept-Encoding: gzip

Response Response HTTP/1.1 200 OK

Content-Type: text/csv

Content-Length: xx

column1, column2, further content

Status codes Standard HTTP1.1 Status Codes [HTTP/1.1]

The following status codes have a special meaning:

▪ 204: No data packet in the packet buffer for subscription.

▪ 304: No data packet in the packet buffer that is younger than the timestamp in the
"if-modified-since" header.

▪ 400: No subscription parameter, or numeric subscription parameter, or missing
Accept-Encoding header.

▪ 403: The user is not authorised to retrieve this subscription via this endpoint or the
publication cannot be retrieved via this endpoint.

▪ 404: No or no longer valid subscription found for the subscription parameter.

▪ 405: The parameter ? subscriptionId= was not specified or no value was specified
for the parameter.

▪ 406: gzip not specified in the "Accept-Encoding" request header.

Table 26: Request/Response between Mobilithek/Data Recipient System on Client Pull HTTPS

9.2.2 Publisher Push HTTPS

The Mobilithek broker system sends a data packet for a subscription to a data receiver system.

Request to the data receiver system

The broker system of the mobile library sends an HTTPS POST request to the data receiver system, in

which the subscription ID in the header element and the user data in the HTTP request body are

transferred. The content type of the request is of the same type as specified in the submission by the

data provider (in the following table text/csv is assumed).

Via the administration component of the Mobilithek, the data recipient must store his URL in the

subscription configuration.

The URL must be stored in full by the data recipient. Mobilithek does not add parameters to it, such as

the subscription ID.

 84

Response to the Mobilithek

The data receiver system must respond to the request with an HTTPS response.

The message body should be empty, the status codes can be the standard HTTP status codes

[HTTP/1.1] can occur as status codes, whereby the meanings described in the following Table 27 apply

as status codes.

Description

Request Request POST /data delivery HTTP/1.1

Host: datennehmerhost

Content-Type : text/csv

Accept-Encoding: gzip

Response Response HTTP/1.1 200 OK

Status codes Standard HTTP1.1 Status Codes [HTTP/1.1]

Table 27: Request/response between broker system of the Mobilithek/data receiver system at the publisher Push
HTTPS

With reference to the explanations in chapter 4.7.2 status codes other than 200 will result in a repeated

attempt to transmit the data packet.

If the data receiving system is technically not accessible, HTTP head requests are sent to the stored

URL. Only when the HTTP head request is acknowledged by the data receiving system with a status of

200 will it be delivered again.

Identity encoding is not supported by Mobilithek.

 85

10 Certificate-based M2M communication
The security component of the Mobilithek requires a certificate-based data exchange between the data

provider system and the platform on the one hand and between the platform and the data recipient

system on the other.

This chapter first provides an overview of the functions of the security component and then describes

the steps that data providers and data recipients must take to request certificates and set them up for

M2M communication.

The certificate is applied for at the administration component of the Mobilithek by the organisation's

administrator and is created after the application and sent to the organisation's administrator by e-

mail. The password required for the signature is sent by SMS to the stored mobile number.

Finally, the data provider system/data recipient system must integrate the certificate into their IT

infrastructure so that the data exchange with the Mobilithek can be authenticated.

10.1 Tasks of the security component

The security component is responsible for implementing the security aspects of the Mobilithek. This

includes in particular the authentication of data provider systems and data recipient systems that want

to communicate with the Mobilithek.

Before the data packets arriving at the Mobilithek are accepted, their origin must be verified. This

includes the authentication of the data provider system belonging to the data package by means of a

digital certificate. Each data provider system must have a valid certificate with which it logs on to the

platform. The security component authenticates the certificate sent by the data provider system within

the Mobilithek.

Before a data packet is sent to a data receiver system, the identity of the data receiver system must be

verified. Each data recipient system must authenticate itself to the Mobilithek by means of a digital

certificate. The security component authenticates the certificate sent by the data recipient sys tem

within the Mobilithek.

The confidentiality of the communication between the data provider system and the Mobilithek on the

one hand and the Mobilithek and the data recipient system on the other hand is guaranteed by the

exclusive use of SSL/TLS transport encryption.

The security component requires standard-compliant [X.509v3]-certificates for authentication; see

also [PKI]. The certificates must be technically integrated into the HTTPS connection to the data

recipient and data provider systems via a client-side, certificate-based connection setup. The presented

certificates are checked for validity and against a revocation list.

 86

Figure 4: Overview of the security architecture

The SSL module in Figure 4 sends a certificate request to the sender for specified URLs and checks the

certificate received for validity and against a revocation list. It then forwards the certificate to the

security component of the Mobilithek.

10.2 Request machine certificate

The Mobilithek operator mediates between the data provider and data recipient system. Data providers

and data recipients apply for one or more machine certificates via the Mobilithek administration GUI

as part of their registration. However, the certificate is then sent to them by the Mobilithek.

To request a machine certificate, you must already be registered with your organisation on Mobilithek.

How to apply for a machine certificate via the Mobilithek is described in [FAQ] described.

10.3 Install machine certificate and exhibitor certificate

In the Apache web server, include the machine certificate as follows:

SSLCertificateFile /usr/local/apache2/conf/ssl.crt/server.crt

Enter the corresponding private key as follows:

SSLCertificateKeyFile /usr/local/apache2/conf/ssl.crt/server.key

In addition, you must store the issuer certificate in the web server:

SSLCACertificateFile /usr/local/apache2/conf/ssl.crt/ca-bundle-client.crt

The certificate is encrypted via the key with the password that was sent to you via SMS. Use the

password to decrypt.

Further explanations of these directives can be found in the mod_ssl documentation:

https://httpd.apache.org/docs/current/mod/mod_ssl.html#sslcertificatefile

https://httpd.apache.org/docs/current/mod/mod_ssl.html#sslcertificatefile

 87

https://httpd.apache.org/docs/current/mod/mod_ssl.html#sslcacertificatefile

Note: If you receive the machine certificate and the issuer certificate within a common p12 file, you

must extract both certificates from this file and then install them. The instructions for this can be found

in chapter 11.

10.4 Authentication of the Mobilithek as a web client

If the Mobilithek functions as a web client in M2M communication, it authenticates itself with its server

certificate, provided the web server on the data provider or data recipient side has activated this option.

Data provider and data recipient systems should activate this option and verify the certificate in order

to determine that the requests were actually made by the Mobilithek.

The certificate chain required for verification can be downloaded from the download area

(https://mobilithek.info/help/download) of the Mobilithek in the category Certificates and must be

stored in the data provider or data receiver system.

In order to establish an SSL connection, it is necessary that a valid server certificate or a machine

certificate issued by the Mobilithek is installed on the server of the data provider or data recipient side.

Note: Do not use the Mobilithek server certificate for verification. This is replaced on a regular basis.

10.5 Authentication of data provider/data recipient web clients

If the data provider or data recipient system functions as a web client in M2M communication, it must

authenticate itself to the Mobilithek with its machine certificate. The platform only accepts requests

from systems that are registered in the metadata directory. Based on the certificate, the machine can

be assigned to the organisation. Furthermore, it can be checked whether the organisation is the owner

of the publication or subscription for which data exchange is to take place.

The server certificate used by Mobilithek is signed by Mobilithek. It is therefore necessary to install it

in the system's "Truststore". The certificate can be downloaded from the download area

(https://mobilithek.info/help/download) of the Mobilithek in the category Certificates.

http://httpd.apache.org/docs/current/mod/mod_ssl.html#sslcacertificatefile
https://mobilithek.info/help/download
https://mobilithek.info/help/download
https://mobilithek.info/help/download

 88

11 Appendix A - prepare p12 file for Apache server
configuration

The Apache server configuration cannot process files of type p12. Manual steps are required for the

preparation, which are described in the following chapter:

First export the keys and certificates. Execute the following command in the command line:

openssl.exe pkcs12 -in <p12-file> -out <collect-file.pem>

Example:

openssl.exe pkcs12 -in ehp.example.com.p12 -out ehp.example.com.keyandcerts.pem

Enter the certificate passwords in the Openssl environment:

>Enter Import Password: <password from SMS>

>MAC verified OK

>Enter PEM pass phrase: <self-assigned pass phrase for the key>

>Verifying - Enter PEM pass phrase: <repeat the self-assigned pass phrase for the key>.

 89

Open the file <collectionfile.pem> with a text editor:

Figure 5: File <collectfile.pem>

Copy the part from

--- BEGIN RSA PRIVATE KEY ----

to

---END RSA PRIVATE KEY ---

to a new file called <server.key>.

 90

Remove the passphrase to prevent it from being requested each time the server is restarted:

openssl rsa -in <server.key> -out <server.key.nopass >

Example:

openssl rsa -in server.key -out ehp.example.com.key

> Enter pass phrase for server.key: <Enter the pass phrase you previously assigned

yourself>.

>writing RSA key

Enter the generated .key file in the Apache configuration under the following attribute:

SSLCertificateKeyFile

The next step is to split the certificates into two files. First open the file <collectionfile.pem> with

a text editor:

 91

Figure 6: File <collectionfile.pem>

Copy the server certificate into a new text file <server.crt>.

Enter this file in the Apache configuration under the following attribute:

SSLCertificateFile

Copy the remaining certificates into a new text file <ca-cert-chain.crt>.

Enter this file in the Apache configuration under the following attribute:

SSLCertificateChainFile

Enter the Mobilithek client certificate incl. certificate hierarchy under the following Apache attribute:

SSLCACertificateFile

 92

Example of an Apache configuration:

SSLCertificateFile "C:\Programme\Apache Software

Foundation\Apache2.2\conf\ssl\ssl.crt\ehp.example.com.crt".

SSLCertificateKeyFile "C:\Programme\Apache Software

Foundation\Apache2.2\conf\ssl\ssl.key\ehp.example.com.key".

SSLCertificateChainFile "C:\Programme\Apache Software

Foundation\Apache2.2\conf\ssl\ssl.crt\bast_cert_chain.crt".

SSLCACertificateFile "C:\Programme\Apache Software

Foundation\Apache2.2\conf\ssl\ssl.crt\bast_trust_chain.crt".

 93

12 Appendix B - DATEX II HTTP Protocol Support
Rule Reference to rule in

[DATEXIIv2PSM],
Chapter 4

Reference to rule in
[DATEXIIv3Annex]

DATEX II v2 DATEX II v3

Suppliers and Clients SHALL use the HTTP/1.1 protocol. Clients
and Suppliers shall fully comply with the HTTP/1.1 protocol
specification in RFC 2616, as of June 1999.

C.1 Basic request / response
pattern:

1.

Clients SHALL use the HTTP GET or POST method of the HTTP
REQUEST message to request data from the Supplier.

C.2 Basic request / response
pattern:

2.

Suppliers SHALL use an HTTP RESPONSE message to respond to
requests.

C.3 Basic request / response
pattern:

3.

Suppliers SHALL NOT respond to HTTP REQUEST messages
using the GET or POST methods by responding with 405
(Method Not Allowed) or 501 (Not Implemented) return codes.

C.4 Basic request / response
pattern:

4.

Suppliers Shall set the 'Last-Modified' header field in HTTP
RESPONSE messages that provide payload data (response code
200) to the value that the information product behind the URL
was last updated.

C.5 Basic request / response
pattern

5.

Clients SHOULD set the 'If-Modified-Since' header field in all
HTTP REQUEST messages if they already hold a consistent set of
data from a particular URL in their database and the last
modification time of that data is known from the 'Last-Modified'
header field of the HTTP header of the HTTP RESPONSE
message within which the payload data was received.

C.6 Basic request / response
pattern:

6.

When setting the 'If-Modified-Since' header field, the client
SHALL copy the value of the Last-Modified header field received

C.7 Basic request / response
pattern:

7.

 94

Rule Reference to rule in
[DATEXIIv2PSM],
Chapter 4

Reference to rule in
[DATEXIIv3Annex]

DATEX II v2 DATEX II v3

within the last successful HTTP RESPONSE containing payload
(response code 200) message into this field.

Suppliers SHOULD provide XML coded DATEX II payload as
"text/xml" media type. Suppliers SHOULD state the used
character set via the "charset" parameter; Suppliers SHOULD use
the UTF-8 character set, i.e., the "Content-Type" response-
header field SHOULD state "text/xml; charset=utf-8.

C.8 Basic request / response
pattern:

8.

Clients MUST accept "identity" content-coding; Clients SHOULD
(and if they do, prefer to) accept "gzip" content-coding; Clients
MAY accept other "content-coding" values registered by the
Internet Assigned Numbers Authority (IANA) in their content-
coding registry1 as long as they also accept "identity" and "gzip"
content-coding.

C.9 Basic request / response
pattern:

9.

()
Deviation:

Clients must
accept gzip

()
Deviation:

Clients must
accept gzip

When including an "Accept-Encoding" request-header field in an
HTTP REQUEST
message, the client MUST NOT exclude acceptance of "identity"
content-coding.

C.10 Basic request / response
pattern:

10.

Suppliers MUST provide "identity" content-coding of the
payload; Suppliers SHOULD provide "gzip" content-coding of the
payload; Suppliers MAY provide other "content-coding" values
registered by the Internet Assigned Numbers Authority (IANA) in
their content-coding registry as long as they also provide
"identity" and "gzip" content-coding.

C.11 Basic request / response
pattern:

11.
 

Clients SHOULD fill access credentials they MAY have received
during the subscription negotiation process into the
'Authorization' header field of the HTTP REQUEST message.

C.13 Authentication

 

 95

Rule Reference to rule in
[DATEXIIv2PSM],
Chapter 4

Reference to rule in
[DATEXIIv3Annex]

DATEX II v2 DATEX II v3

Server providing access credentials (user name & password)
during the subscription negotiation phase MAY respond with
response code 401 (Unauthorized) to HTTP REQUESTS that do
not contain valid access credentials in the 'Authorization' header
field.

C.14

Servers SHALL produce and Clients SHALL process the following
return codes:

- 200 (OK), in responses carrying payload,
- 304 (Not Modified), if no payload is send because of the
specification in the 'If-Modified-Since' header,
- 503 (Service Unavailable), if an active HTTP server is
disconnected from the content feed,
- 404 (Not Found), if a file based HTTP server does not have a
proper payload document stored in the place associated to the
URL.

C.15 Additional Rules

()
Deviation:

403 instead of
401

Additionally
204 when

packet buffer
is empty

Additionally
204 when

packet buffer
is empty

Payload data for Information products SHALL be denoted by a
URL according to the following convention:

d2lcp_infop = "http://" host [":" port] infop_path "/content.xml"
["?" query] where "infop_path" is a "path" component as specified
in section 3.3 of [RFC 2396], but excluding the last path segment.

C.16 Describing payload
and interfaces

 96

13 Appendix C - Change notice
Version Date Changes

1.2 22.09.2023 • Minor spelling and content errors corrected.

• Added new chapters 6.2.1.2 and 7.3.1.2 for the corresponding new interfaces

• Supported TLS versions expanded to 1.3

1.2.1 04.03.2024 • Handling of referenced JSON-subschemas adapted in chapter 3

• The Accept-Encoding header value gzip was changed in all request tables from uppercases to lowercases

letters

• Correction of the Request-URIs in the chapters 6.2.2.1 and 9.2

• Corrected XML-Examples from chapter 8.2.1

• Removed chapter for SNI not supported as SNI is supported by Mobilithek

• namespace tag was unified to <soapenv: > in the whole document

• SOAP (XML)-Response in chapter 6.1.2.2 adapted

1.2.2 04.04.2024 • Description of a special case for DatexIIv3 SOAP pulls on the data recipient side added in section 7.2.2.1

	1 Introduction
	1.1 Abstract
	1.2 Structure of the document
	1.3 Referenced documents
	1.3.1 General
	1.3.2 DATEX II v2
	1.3.3 DATEX II v3

	1.4 List of abbreviations

	2 Components of the Mobilithek at a glance
	3 Data exchange formats
	3.1 DATEX II
	3.2 Container format
	3.3 Other data formats

	4 Interfaces of the broker system of the Mobilithek
	4.1 Encryption of communication
	4.2 Compression
	4.3 Support of "Delta" data packets
	4.4 Validity period of data packets
	4.5 Promise of immutability
	4.5.1 DATEX II v2
	4.5.2 DATEX II v3

	4.6 Use of the interfaces
	4.6.1 Data provider side
	4.6.2 Data recipient side

	4.7 Error handling
	4.7.1 Client pull from data provider
	4.7.2 Publisher Push

	4.8 Use of the "If-Modified-Since" header field in the HTTPS protocol
	4.8.1 Data provider
	4.8.2 Data recipient
	4.8.3 Unchanged data

	5 Data format-independent interfaces
	5.1 Deleting the publication content
	Request to the Mobilithek
	Response to the data provider

	6 DATEX II v2
	6.1 SOAP interface
	6.1.1 Data provider side
	6.1.1.1 Client Pull SOAP
	Providing a web service
	Calling a web service

	6.1.1.2 Publisher Push SOAP
	Providing a web service
	Calling the web service

	6.1.2 Data recipient side
	6.1.2.1 Client Pull SOAP
	Providing a web service
	Calling the web service

	6.1.2.2 Publisher Push SOAP
	Providing a web service
	Calling the web service

	6.2 HTTPS interface
	6.2.1 Data provider side
	6.2.1.1 Client Pull HTTPS
	Request to the data provider
	Response to the Mobilithek

	6.2.1.2 Publisher Push HTTPS
	Request to the Mobilithek broker system
	Response to the data provider

	6.2.2 Data recipient side
	6.2.2.1 Client Pull HTTPS
	Request to the Mobilithek
	Response to the data recipient

	6.3 OCIT-C interface
	6.3.1 Scope of functions
	6.3.2 Data provider side - Publisher Push OCIT-C
	6.3.3 Data receiver side - Client Pull OCIT-C

	7 DATEX II v3
	7.1 Notes on handling schemas with Exchange 2020
	7.1.1 DATEX II v3 Level A or B
	7.1.2 DATEX II v3 Level C

	7.2 SOAP interface
	7.2.1 Data provider side
	7.2.1.1 Client Pull SOAP
	Providing a web service
	Calling a web service

	7.2.1.2 Publisher Push SOAP
	Providing a web service
	Calling the web service

	7.2.2 Data recipient side
	7.2.2.1 Client Pull SOAP
	Providing a web service
	Calling the web service

	7.2.2.2 Publisher Push SOAP
	Providing a web service
	Calling the web service
	Synchronisation

	7.3 HTTPS interface
	7.3.1 Data provider side
	7.3.1.1 Client Pull HTTPS
	Request to the data provider
	Response to the Mobilithek

	7.3.1.2 Publisher Push HTTPS
	Request to the Mobilithek broker system
	Response to the Data provider

	7.3.2 Data recipient side
	7.3.2.1 Client Pull HTTPS
	Request to the Mobilithek
	Response to the data recipient

	8 Container
	8.1 SOAP interface
	8.1.1 Data provider side
	8.1.1.1 Client Pull SOAP
	Providing a web service
	Calling a web service

	8.1.1.2 Publisher Push SOAP (Container)
	Providing a web service
	Calling the web service

	8.1.2 Data recipient side
	8.1.2.1 Client Pull SOAP
	Providing a web service
	Calling the web service

	8.1.2.2 Publisher Push SOAP
	Providing a web service
	Calling the web service

	8.2 HTTPS interface
	8.2.1 Data provider side
	8.2.1.1 Client Pull HTTPS
	Request to the data provider
	Response to Mobilithek

	8.2.1.2 Publisher Push HTTPS
	Request to the broker system of the Mobilithek
	Response to the data provider

	8.2.2 Data recipient side
	8.2.2.1 Client Pull HTTPS
	Request to the Mobilithek
	Response to the data receiver system

	8.2.2.2 Publisher Push HTTPS
	Request to the data receiver system
	Response to the Mobilithek

	9 Other data formats
	9.1 Data provider side
	9.1.1 Client Pull HTTPS
	9.1.1.1 Request to the data provider
	9.1.1.2 Response to the Mobilithek

	9.1.2 Publisher Push HTTPS
	9.1.2.1 Request to the Mobilithek broker system
	9.1.2.2 Response to the data provider

	9.2 Data recipient side
	9.2.1 Client Pull HTTPS
	Request to the Mobilithek
	Response to the data receiver system

	9.2.2 Publisher Push HTTPS
	Request to the data receiver system
	Response to the Mobilithek

	10 Certificate-based M2M communication
	10.1 Tasks of the security component
	10.2 Request machine certificate
	10.3 Install machine certificate and exhibitor certificate
	10.4 Authentication of the Mobilithek as a web client
	10.5 Authentication of data provider/data recipient web clients

	11 Appendix A - prepare p12 file for Apache server configuration
	12 Appendix B - DATEX II HTTP Protocol Support
	13 Appendix C - Change notice

