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Abstract— We present and discuss the Synset Boulevard
dataset, designed for the task of surveillance-nature vehicle
make and model recognition (VMMR)—to the best of our
knowledge the first entirely synthetically generated large-scale
VMMR image dataset. Through the simulation of image data
rather than the manual annotation of real data, we intend to
mitigate common challenges in state-of-the-art VMMR datasets,
namely bias, human error, privacy, and the challenge of
providing systematic updates. On the other hand, the provision
and use of synthetic data introduce individual challenges, such
as potential domain gaps and a less pronounced intra-class
variance. Our approach to address these challenges, using path
tracing and physically-based, data-driven models, is evaluated
on an existing large real-world dataset. Overall, our synthetic
dataset contains 32 400 independent images (each with different
imaging simulations and with/without masked license plates,
leading to a total of 259 200 images) from 162 different vehicle
models of 43 makes depicted in front view. It is split into 8 sub-
datasets to investigate the influence of optical/imaging effects on
the classification ability.

I. INTRODUCTION AND MOTIVATION

THE task of “vehicle make and model recognition”
(VMMR) has a wide range of applications, from traffic

analysis to police surveillance. It involves classifying a
given image of a vehicle into a fine-grained class hierarchy
including the make (e.g., “Audi”), the model (e.g., “A8”),
and possibly the model year (e.g., “2016”). Implementations
may further include extracting features such as vehicle color.

Use cases include analyzing the traffic share of vehicles on
given roads e.g., for intelligent transportation systems (ITS),
traffic management systems (TMS), or the identification of
vehicles within automated vehicle surveillance (AVS), or
electronic toll collection (ETC). The latter applications usu-
ally primarily rely on license plate recognition; however, this
recognition can be inhibited either by unintentional effects
(e.g., stains on the plate) or, commonly in organized crime,
by deliberately manipulating or hiding the license plates.
Here, VMMR can considerably support the identification of
vehicles as described by Pan, Zhou, Zhou, et al. [1].

Besides conventional image processing challenges, such
as variations in light and weather, occlusions, shadows, and
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Fig. 1: Example images and one label image from the Synset Blvd. dataset.

reflections, VMMR involves the particular challenge arising
from a large class set of vehicle types, with low inter-class
and high intra-class variance. In addition, new vehicle models
are constantly being released and old models are modernized
through facelifts, causing VMMR datasets to go out of date
within few years if they are not maintained at great expense.

Creating training data for VMMR is a time-consuming,
laborious, and expensive process: Manual labeling of im-
age data requires expert knowledge and is still prone to
errors and inaccuracies, affecting the quality of results [2].
When acquiring the data, it is difficult to ensure balanced
classes and representative variance. This can challenge the
certification of AI-based systems and services, e.g., in the
European Union, where the proposed “AI Act” [3] introduces
high requirements for high-risk AI systems (including the
domains of law enforcement and operation of road traffic, cf.
[3, annex III 2a, 6f]), such as the requirement that “Training,
validation and testing datasets should be sufficiently relevant,
representative and free of errors and complete in view of the
intended purpose of the system”. Furthermore, the generation
of datasets is subject to privacy requirements, such as the
European General Data Protection Regulation (GDPR) [4]
limiting not only the processing and redistribution but also
already the recording and storage of any data containing
privacy-critical information.

The synthetic generation of data can, in principle, mitigate
these challenges, by reducing acquisition costs and manual
effort for the provision of ground truth, by enabling para-
metric, controlled variation and thus a means of systematic
balancing, and by avoiding privacy issues. It can also directly
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TABLE I
Most relevant publicly available web-nature vmmr datasets.

Dataset # Samples # Classes Perspective

Cars-196 [11] 16 185 196 mixed
CompCars [12] 136 726 1,716 mixed
VMMRdb [13] 291 752 9 170 mixed

Frontal-103 [14] 65 433 1 759 front
DeepCar 5.0 [15] 40 185 480 front & 3/4

TABLE II
Most relevant publicly available surveillance-nature vmmr datasets.

Dataset # Samples # Classes Persp.

CompCars [12] 50 000 281 front
BoxCars21k [16] 63 750 148 mixed

BoxCars116k [17] 116 286 693 mixed
Synset Blvd. 32 400 162 front

provide a methodology for expanding and updating the
dataset, by generating new data once new vehicle models
and corresponding 3D models are available.

The precondition for successfully leveraging these ad-
vantages is resolving a key challenge in simulation: The
“domain gap”, describing a systematic and significant devi-
ation between the distribution of two data sources, here the
simulation vs. the real world. This gap, also called “sim-
to-real gap”, is known to impact the results of machine
learning and specifically transfer learning [5] significantly.
In general, its resolution is considered challenging and is the
subject of active research. Generic approaches to bridge this
gap are domain randomization (DR) [6] and structured DR
(SDR) [7], used for the creation of several synthetic vehicle
detection datasets [8]–[10]. The presented dataset is intended
to contribute to understanding the effect of the “sim-to-real”
domain gap and evaluating potentials for limiting its effects.

II. STATE OF THE ART

A. VMMR Datasets

In the field of VMMR, numerous datasets exist, most of
which, however, are of relatively small scale. This section
focuses only on publicly available VMMR datasets of a scale
that is comparable with the presented dataset, as these pre-
dominantly serve as benchmarks for upcoming approaches.

Existing datasets can be categorized into web-nature
(Tab. I) and surveillance-nature (Tab. II). Web-nature
datasets include web images as published by manufacturers
and vendors complete with make and model information.
In general, this category comprises a greater number of
large-scale datasets, presumably because they are easier to
label and acquire. Surveillance-nature images are captured
in public traffic, usually by traffic cameras. Here, only two
common publicly available large-scale datasets are known.

For either category, existing datasets are difficult to com-
pare, interchange, or combine, due to the different record-
ing perspectives, styles, and a limited overlap in classes.

Sánchez, Parra, et al. [2] analyzed the Cars-196 [11], Comp-
Cars [12], BoxCars21k [16], VMMRdb [13], and Frontal-
103 [14] datasets with regard to strengths but also possible
limitations and biases. These considerations were taken as a
significant basis for the design of the presented dataset.

For all analyzed datasets, a geographical bias was deter-
mined. For instance, the CompCars [12] and Frontal-103
[14] datasets captured in China include a large percentage of
Asian vehicle models. The entire BoxCars21k [16] dataset
was recorded in one city in the Czech Republic. Other
problems stated by Sánchez, Parra, et al. [2] are mislabeling
of vehicles, the combination of variants and facelifts into a
single class, or the class imbalance problem, leading to a
poor classification performance of underrepresented classes.
Web-nature datasets suffer less from under-representation,
but instead from the domain gap between professional im-
ages and actual public traffic scenes. These effects were
found to limit the performance in practical applications.

With their experiments on a cross dataset combining sam-
ples from the CompCars [12], VMMRdb [13], and Frontal-
103 [14] datasets, Sánchez, Parra, et al. [2] showed that
the classification performance degrades considerably (for
CompCars up to 59 %) when evaluating on data of differing
domains, for instance, conditioned by more challenging data
or data of another dataset. They conclude that although state-
of-the-art results achieve over 95 % accuracy on available
VMMR datasets, there is still a lot of work to do for
unbiased VMMR in realistic traffic and driving scenarios.
This is where we see great potential for improvement by
using synthetic datasets.

B. Synthetic Vehicle Datasets

To the best of our knowledge, there exists no entirely
synthetic VMMR dataset so far—in contrast to the tasks
of vehicle detection or semantic segmentation, where the
resulting performance of deep learning (DL) approaches
was already successfully increased by (additionally) using
synthetic datasets for training [10], [18]–[21]. Tab. III pro-
vides an overview of some popular synthetic vehicle datasets
ordered by year of publication. All listed datasets were gen-
erated by using real-time (i.e., rasterization-based) rendering
approaches. One possibility is to make use of a computer
game [18], [19]. Modern games provide large, open worlds
with a high level of detail. However, label generation is chal-
lenging, since labels are not natively provided, but have to be
reconstructed from the communication between the computer
game and graphics hardware. Another disadvantage is the
extensibility of game datasets, which are typically limited
to objects present in the original game. Therefore, other
approaches directly adopt the underlying game engines, such
as Unity [22] or Unreal Engine [10], [20], [21], [23]–[25],
and thereby gain flexibility in exchange for increased effort
in building complex worlds.

III. DATASET GENERATION

The presented dataset is generated by the Fraunhofer
simulation platform OCTANE [26], which provides a mod-

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

https://www.kamo.one


“Synset Boulevard: A Synthetic Image Dataset for VMMR,” 2024 IEEE International Conference on Robotics and Automation, Yokohama kamo.one

TABLE III
Popular synthetic vehicle datasets.

Dataset Tool Main Purpose # Samples

[18] GTA5 Sem. Segmentation 24 966
[19] GTA5 Object Detection 200 000

SYNTHIA [20] Unity Sem. Segmentation 200 000
vKITTI [24] Unity Object Detection 21 260

VehicleX [21] Unity Vehicle Re-ID —
vKITTI2 [25] Unity Object Detection 42 520
SAVED [10] Unreal Vehicle Part Recog. 586 340
Synset Blvd. OCTANE VMMR 32 400

ular, plugin-based architecture written in C++, allowing to
extend functionality at runtime. Two largely interchangeable
rendering plugins are available, one based on the real-time
rasterization graphics engine OGRE3D [27], the other based
on the physically-based path tracer Cycles [28]. The Cycles
render engine was developed by the Blender project and
implements an unidirectional path tracing algorithm with
multiple importance sampling. The image rendering was
performed exclusively using the Cycles plugin i.e., path
tracing, while the OGRE3D plugin to OCTANE was used to
generate texture-level label images including road markings.

Modeling in OCTANE enables a direct stochastic approach
of scenario generation; hence, the variations described in
Sec. III-B et seqq. provide a full overview of the main steps
in defining the parameters to generate the dataset.

A. Preliminary Examinations

To investigate the influence of synthetization properties
such as render settings, environment, and vehicle variation
on the classification ability, we conducted an ablation study
on small sub-datasets consisting of 49 vehicle models with
100 images per class (200 in case of DR and SDR) before
generating the Synset Blvd. dataset. For the experiments, we
utilized the ResNet50 [29] backbone of the OpenMMLab
Classification Toolbox [30], pretrained on the ImageNet1k
[31] dataset. The resulting network was evaluated on six
overlapping classes1 of the CompCars dataset [12]. Note
that only daytime images of the CompCars dataset were
used since solely daytime images are included in the Synset
Blvd. dataset. The results are given in Tab. IV. Therein, the
specified differences refer to the F1 score of the base dataset.

We drew the following conclusions from this study:
• The Synset Blvd. dataset should be rendered with 100

samples per image (like the base dataset) since a reduc-
tion to 20 or 50 samples leads to performance loss.

• A lack of environment variation significantly reduces
the resulting F1 score. Therefore, a realistic environment
modulation is of great importance.

• Lack of denoising had a negative effect (albeit small).
Although some authors [32] describe a positive impact

1Mercedes S-Class, Mercedes C-Class, Porsche Panamera, Skoda Rapid,
VW CC, and Porsche Cayenne

TABLE IV
Results of the conducted ablation study.

Type of Variation F1 Diff.

Base Dataset 74.9 —
Reduced Number of Samples (50) 64.49 −10.41
Reduced Number of Samples (20) 51.46 −23.44

No Environment Variation 59.48 −15.42
No Denoising 70.63 −4.27

DR 1 (Background & Distractors) 70.03 −4.87
DR 2 (Background, Effects & Distractors) 75.51 +0.61

SDR (Background & Effects) 76.62 +1.72

denoising PSF
scene / veh.
variation*

path tracing
(Cycles)

geometric scene modeling analog / photometric image digital image

label rendering
(OGRE3D)

DIS

(De-)
Bayer

good
AEC/WB

bad*
AEC/WB

Fig. 2: Overview of the synthetization steps discussed in Sec. III, in
particular Sec. III-D, ordered by the domain of operations. Steps marked
with an asterisk (*) contain significant modeled variations.

(i.e., a higher robustness) of using noisy images for
training, we decided to apply denoising on the raw
Synset Blvd. dataset renders, and add model-based
synthetic camera noise subsequently.

• DR [6] respectively SDR [7] holds potential for future
improvements; particularly, a realistic scene variation
typically outperforms purely random augmentations.

B. Environment Variation

In the actual Synset Blvd. dataset, the visible scene con-
tains a straight road segment (uniformly distributed either
with or without a concrete barrier) with procedural texture
variations equivalent to 2.4 km of road length using textures
of texturelib.com [33] as a basis. Road markings were added
randomly and include single solid and dashed, white and
yellow lines of random proportions, along with ground truth
labels (cf. Fig. 1), such that a total of 150 different road
surfaces occur uniformly across the dataset, both as wet
and dry surfaces. Environment lighting uses image-based
lighting (IBL) based on 183 environment maps, collected
from Polyhaven [34], which are sampled uniformly, and
whose azimuth is varied uniformly.

C. Vehicle Variation

1) Model: The main part of the scene is the particular
vehicle which is depicted in the center of the images. For the
generation of this dataset, we have purchased a total of 162
vehicle models, predominantly from DOSCH DESIGN [35];
one model stems from cgtrader [36]. We attached importance
to two conditions for the selection of vehicle models: On one
hand, we paid attention that our selection includes vehicles
from diverse continents to counteract the geographical bias.
Therefore, we selected sets of 3D vehicle models common in
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Fig. 3: A statistic from the German Federal Motor Transport Authority
(KBA) [37] showing new vehicle registrations by color in 2021. It is based
on 2 622 132 newly registered cars.

Europe, USA, and Asia. On the other hand, we aimed for a
notable overlap of classes with the CompCars dataset [12]—
the dataset we chose for our evaluation—to get meaningful
evaluation results. In contrast to the available real-world
datasets, our Synset Blvd. dataset offers for each class the
same number of images, 200 per vehicle, i.e., the dataset is
balanced to equal class representation.

2) Car Paint: We distributed the car paint color according
to a statistic of the German Federal Motor Transport Au-
thority (Kraftfahrt-Bundesamt, KBA) [37] that quantitatively
describes the colors of newly registered vehicles based on
2 622 132 registrations in 2021 as visualized in Fig. 3. Within
a selected color we nuance the shade to cover more variation.

3) Pose: Vehicle positions vary across the entire width of
the road (with the camera always centered on the vehicle),
while its orientation (roll, pitch yaw) is normally distributed
by (σroll = 0.7◦, σpitch = 0.3◦, σyaw = 1.3◦) respectively.
Final images are cropped to a randomly padded bounding
box around the vehicle to match the established training
dataset format as used in CompCars for example.

4) Lights: The vehicle lights are equally likely either
completely on or off2, but no distinction is made concerning
specific light functions due to a lack of available data.

D. Optical and Imaging Effects

The path tracing simulates ideal light transport per camera
pixel (containing only noise from the render sampling, which
is denoised directly through the Nvidia AI Denoiser [38]).
Actual camera images contain a variety of effects from light
transport that are impractical to consider during path tracing,
as well as effects from the digital imaging process. We
distinguish the quality levels into good and bad, each with
and without simulated Bayer demosaicing, leading to four
levels of quality (cf. Fig. 4c) per path tracing result.

Prominently, a point spread function (PSF) describes a
convolutional effect per object ray caused by focusing, lens
optics, diffraction, and may also include scattering in the
atmosphere and on the lens. The channel-dependent parame-
ters are approximated as a mixture-of-Gaussian model, based
on a Tamron M112FM35 35 mm lens (but taken for the
simulated focal length of 50 mm) used for the real-world
reference dataset acquisition, and is identical across all levels
of quality in the dataset (cf. Fig. 4b). The noise levels depend

2Following a manual annotation of the CCSV Audi Q5 with 69 samples
with low beam, and 110 with daytime running lights, out of 216 total.

on the overall scene intensity (with lower light leading to
stronger noise), with low and constant overall levels for the
good quality, and random, high levels for the bad quality.
Additionally, the bad quality introduces lens flare effects
assuming an approximately centered optical axis. No image
distortions were simulated due to the narrow field of view.

Automatic exposure control (AEC) and white balancing
(WB) affect the digital image brightness and tint. For the
good quality, AEC and white balance settings are optimal
(white balance according to the gray world assumption) w.r.t.
the visible frame. For the bad quality, both AEC and white
balance deviate randomly.

After digitalization, digital image sharpening (DIS) is ap-
plied as a 3×3 highpass kernel uniformly across all qualities.
For the Bayer quality variants, a final step introduces artifacts
from simple Bayer BGGR bilinear demosaicing.

E. Structure and Annotations

The dataset is subdivided into the four different simulated
imaging qualities regular/Bayer good/bad (cf. Fig. 4), each
with and without masked license plates (mlp), within which
162 vehicle classes, each with 200 samples, are placed.

Each vehicle sample contains one simulated camera image
cropped to the approximate bounding box, one corresponding
semantic segmentation image (cf. Fig. 1), along with car
paint color (as category and RGB), car paint metalness,
approximate time of day, and the road condition (wet, dry).

Per vehicle class, we specify the make, model, model
year(s) as far as known today, and the number of doors,
predominantly based on data from the ADAC database [39].

For experiments with masked license plates, we trained a
YOLOX [40] model on the Car Plate Detection [41] dataset
for 60 epochs. Afterward, we evaluated it on the images of
Synset Blvd. and filled the area of all bounding boxes with
a confidence greater than 0.2 with the normalization mean
used for training our classification networks, i.e., a gray tone.

IV. EVALUATION

A. Training Setup

For the evaluations, we employ a ConvNeXt-Small [42]
classification network of the OpenMMLab Classification
Toolbox [30]. The model is trained on the full train set of
the Synset Blvd. dataset for 100 epochs to classify all 162
classes. We apply an AdamW optimizer, an initial learning
rate of 10−2 with a cosine decay towards 10−6, a weight
decay of 10−2, and a batch size of 64. We load backbone
weights trained on ImageNet1k [31] as pre-training. To
reduce overfitting, we freeze the first two stages of the
ConvNeXt backbone and apply label smoothing with a value
of 0.1 and exponential moving average with a momentum of
10−4. During training, a randomly resized crop, a random
horizontal flip, RandAugment [43], and random erasing are
applied as data augmentation. During inference, the image
is rescaled to 256 pixels on the shorter side preserving the
image ratio and a center crop to 224×224 pixels is performed.
We train each configuration with three different seeds and
report the mean and the standard deviation of the three runs.
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(a) Sample images from real dataset acquired with a Basler ace acA1920-
40gc camera (Sony IMX249) and a Tamron M112FM35 35 mm lens.
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(b) Used point spread function approximated based on the Tamron
M112FM35 (while dataset images, as below in (c), use a 50 mm lens to
achieve a resolution comparable to CompCars) and Bayer pattern on the
Sony IMX249. The functions observe energy conservation; the amplitude
is indicated w.r.t. the green peak. Values in µm refer to the Sony IMX249.

good bad bad, Bayer

(c) Three of the four qualities (good, Bayer not shown) computed per
geometric path tracing result. The “good” quality set has optimal balance
and low noise levels. Bad introduces AEC and white balance deviations,
lens flares and higher noise levels. Bayer introduces demosaicing effects
from a BGGR Bayer pattern (visible, e.g., in the headlight fringes).

Fig. 4: Overview of optical and imaging effects applied after path tracing
and subsequent denoising of render sample noise, cf. Sec. III-D.

B. Testing on CompCars

We evaluate the trained network on the daytime images
of the test set of the CompCars Surveillance [12] (CCSV)
dataset. To investigate the impact of the vehicle model
differences, we select subsets of the classes for the evaluation
that match the classes of Synset Blvd. by different degrees
of granularity. First, we pick all classes of CCSV with
matching make and model. Afterward, we increase the class
specificity step-by-step by considering additional attributes
like the model year, the facelift version, and whether the
images contain country-specific versions. For the model year,
we consider the initial year of generation without considering
facelifts. We aggregate the predictions of models for which
multiple versions are present in Synset Blvd., e.g., with

TABLE V
Evaluation of ConvNeXt-Small trained on Synset Blvd. and tested on
CCSV. We add additional criteria for the matching of models leading to
car models being more similar between both datasets for a single class, but
reducing the total number of overlapping car models. Abbreviations: Y –

Year, F – Facelift, C – Country, mlp – masked license plate.

Y F C F1 F1 mlp F1 CCSV # Models

50.3±0.6 50.1±0.4 97.4±0.0 51
✓ 93.5±0.9 94.1±0.7 100.0±0.0 21
✓ ✓ 100.0±0.0 99.8±0.3 100.0±0.0 12
✓ ✓ ✓ 100.0±0.0 99.8±0.3 100.0±0.0 10

different model years, since CCSV also refrains from this
distinction. The results are shown in Tab. V.

Overall, they indicate a very good generalization ability
and usefulness of synthetic data for training VMMR models,
with a perfect classification if the vehicle models in the
training set match the models in the test set in terms of model
year and facelift variant. Additionally, the results show the
importance of annotating the model years for a dataset, since
not considering this leads to a drop of 43.2 points in terms of
F1 score in our experiments. This insight is particularly im-
portant considering that CCSV has not annotated any years.
For the overlapping models, we have manually annotated
model years, facelift variant, and country variant to check
for a fine-grained matching with the Synset Blvd. models.
As expected, including the facelift constraint increases the
accuracy significantly since the training examples now better
match the test examples. It indicates that considering the
facelift can be equivalently important as considering the
model generation of a car. Adding the facelift constraint is
increasing the F1 score to 100% with no improvement to
be gained anymore by additionally considering the country
variant of the vehicle models. So, the differences between car
models of different countries, such as different positioning of
the front light elements seem to have a negligible impact. We
additionally evaluated a training with masked license plates
to suppress overfitting on the limited variation of license
plates as described in Tab. VII. However, for the evaluated
scenario the differences to the regular dataset in terms of F1
score are lower than the standard deviation of the training
runs. This indicates that the design of the license plate has
only a minor impact on the classification. For reference, we
include results of a model trained on the CCSV train set
which achieves an F1 score close to 100 for all evaluated
scenarios but the set of vehicles which do not match the
model year with the equivalent SynSet Blvd. vehicle models.
Thus, this specific set of vehicle models is likely harder to
distinguish than the other evaluated models. While the higher
F1 scores of the CCSV training might seem to indicate a
domain gap between the synthetic dataset and the real-world
dataset, most of the accuracy gap can be attributed to the
older generations of vehicle models present in CCSV, biased
sampling strategy of datasets like CompCars, and general
domain gaps between datasets. In this regard, our results
are in line with other authors evaluating in cross-dataset
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Fig. 5: Samples from the dataset of the “Bayer, bad” configuration, vehicle images cropped to their (slightly and randomly padded) bounding box.

TABLE VI
Evaluation of ConvNeXt-Small trained on different configurations of
Synset Blvd. and tested on CCSV. Abbreviations: Conf. – Configuration,

mlp – masked license plate, Bay. – Bayer.

Conf. F1 F1 mlp Conf. F1 F1 mlp

Bay., good 99.1±0.8 99.7±0.2 good 100±0.0 99.8±0.3

Bay., bad 99.4±0.4 99.6±0.1 bad 99.3±0.5 99.5±0.1

scenarios, as e.g., Sánchez et al. [2].
In Tab. VI, we analyze the impact of different post-

processing configurations of the Synset Blvd. dataset. We
use these car models for evaluation for which model year
and facelift variant match the models in CCSV. While Bayer
good, Bayer bad, and (regular) bad show similar accuracies,
(regular) good is slightly in advantage by less than 1 per-
centage point with an F1 score of 100%. Masking the license
plates improves the accuracy slightly for all configurations
but (regular) good. Nonetheless, the differences between the
configurations are below the standard deviation of the diffrent
training seeds for most cases.

V. CONCLUSION AND OUTLOOK

We have presented the Synset Blvd. synthetic dataset
for the task of surveillance-nature vehicle make and model
recognition (VMMR), representing—to the best of our
knowledge—the first entirely synthetically generated large-
scale VMMR image dataset. Based on the findings of pre-
liminary studies and prior work on VMMR, the dataset
contains 32 400 images of 162 classes (259 200 with vari-
ations), rendered via the Cycles path tracing engine in the
OCTANE simulation, under different data- and physically-
based parameters modeling the imaging process. Annotated
detail variations include car paint colors and metalness, road

surface conditions, approx. daytime, and imaging process
parameters.

Applications of the generated data for a VMMR ML task
on the real-world CompCars dataset indicate that synthetic
data enable an ML performance comparable to real datasets.
Specifically, some challenges with manual annotation are
successfully avoided; however, some challenges specific to
the synthetic generation remain that will be detailed below.

Outlook

The presented dataset contains several known limitations
that were outlined in Tab. VII. Most prominently, the intra-
class variation should be improved by including more vehicle
model variants and realistic vehicle light functions.

To effectively resolve the challenge in VMMR of keeping
the dataset “up to date” with new models being released,
the systematic extension would be required, primarily by
reducing the manual effort of preparing the vehicle models
and parameters for simulation. To enable the use even in
critical or “high-risk” applications, such as law enforcement,
a considerably more substantial evaluation of the achievable
reliability in the trained ML models is required.

The approach of using a data- and physically-based sim-
ulation enables a detailed sensitivity analysis to parame-
ters (both from the perspective of VMMR and from the
perspective of evaluating the effects of synthetic data) that
was conducted and supported only to a limited degree. A
more comprehensive and quantitative variation of camera,
environment, and lighting parameters would enable a more
exhaustive and comparative study of effects, including a com-
parison of rasterization-based approaches, path/ray tracing-
based approaches, the addition of style transfer, with different
domain variations of real-world data, to establish a basis for
quantifying the “sim-to-real” gap with respect to other types
of domain gaps.

TABLE VII
Comparison of the known advantages and limitations of Synset Blvd. in relation to CCSV.

Features of Synset Blvd. Limitations of Synset Blvd.

Less effort expanding without domain divergence
different

from
CCSV

Smaller number of classes and thus of total images
Balanced class distribution Less intra-class variance due to single vehicle model variants
Decreased geographic bias Fixed license plate modulation per vehicle model (except mlp subset)

No privacy issues No complex shadows/reflections/occlusions
No mislabeling due to human errors No low-light/nighttime images

Variations are capable of parametrization in common
with

CCSV

Opaque/blurred windshield modulation might enlarge domain gaps
High coverage of front camera perspectives Only frontal perspective images

Results comparable to other cross-dataset results No extreme weather conditions (snow, raindrops, fog, ...)
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[17] J. Sochor, J. Špaňhel, and A. Herout, “Boxcars: Im-
proving fine-grained recognition of vehicles using 3-d
bounding boxes in traffic surveillance,” IEEE trans-
actions on intelligent transportation systems, vol. 20,
no. 1, pp. 97–108, 2018.

[18] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Play-
ing for data: Ground truth from computer games,” in
Computer Vision–ECCV 2016: 14th European Con-
ference, Amsterdam, The Netherlands, October 11-
14, 2016, Proceedings, Part II 14, Springer, 2016,
pp. 102–118.

[19] M. Johnson-Roberson, C. Barto, R. Mehta, et al.,
“Driving in the Matrix: Can Virtual Worlds Re-
place Human-Generated Annotations for Real World
Tasks?” arXiv preprint arXiv:1610.01983, 2016, Srid-
har, Sharath Nittur and Rosaen, Karl and Vasudevan,
Ram.

[20] G. Ros, L. Sellart, J. Materzynska, et al., “The
SYNTHIA Dataset: A Large Collection of Synthetic
Images for Semantic Segmentation of Urban Scenes,”
in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Vazquez,
David and Lopez, Antonio M., Jun. 2016.

[21] Y. Yao, L. Zheng, X. Yang, et al., “Simulating content
consistent vehicle datasets with attribute descent,” in
Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceed-

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

https://www.kamo.one
https://doi.org/10.1109/ACCESS.2021.3104340
https://doi.org/10.1109/TITS.2020.3027451


“Synset Boulevard: A Synthetic Image Dataset for VMMR,” 2024 IEEE International Conference on Robotics and Automation, Yokohama kamo.one

ings, Part VI 16, Naphade, Milind and Gedeon, Tom,
Springer, 2020, pp. 775–791.

[22] https://unity.com.
[23] https://www.unrealengine.com.
[24] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual

Worlds as Proxy for Multi-Object Tracking Analysis,”
in CVPR, 2016.

[25] Y. Cabon, N. Murray, and M. Humenberger, “Virtual
KITTI 2,” arXiv preprint arXiv:2001.10773, 2020.

[26] https://www.octane.org.
[27] https://www.ogre3d.org.
[28] https://www.cycles-renderer.org.
[29] K. He, X. Zhang, et al., “Deep Residual Learning

for Image Recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), Ren, Shaoqing and Sun, Jian, Jun. 2016,
pp. 770–778.

[30] M. Contributors, OpenMMLab’s Image Classification
Toolbox and Benchmark, https://github.com/
open-mmlab/mmclassification, 2020.

[31] J. Deng, W. Dong, R. Socher, et al., “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recogni-
tion, Li, Li-Jia and Li, Kai and Fei-Fei, Li, Ieee, 2009,
pp. 248–255.

[32] H. Jang, D. McCormack, and F. Tong, “Noise-trained
deep neural networks effectively predict human vision
and its neural responses to challenging images,” PLoS
biology, vol. 19, no. 12, e3001418, 2021.

[33] D. Chugai and O. Chugai, http://texturelib.
com.

[34] https://polyhaven.com.
[35] https://doschdesign.com.
[36] https://www.cgtrader.com/3d-models/

car/luxury-car/silver-jeep-3d-model.
[37] Kraftfahrt-Bundesamt, Dezente Farben nach wie vor

gefragt, https : / / www . kba . de / DE /
Statistik / Fahrzeuge / Neuzulassungen /
Farbe/2021/2021_n_farbe_kurzbericht_
pdf.pdf, Accessed: 2023-02-20, 2021.

[38] D. Russell, https : / / github . com /
DeclanRussell/NvidiaAIDenoiser, 2017.

[39] G. A. C. ADAC, Autokatalog (car catalog), https:
/ / www . adac . de / rund - ums - fahrzeug /
autokatalog/.

[40] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, YOLOX:
Exceeding YOLO Series in 2021, 2021. arXiv: 2107.
08430 [cs.CV].

[41] Car license plates dataset. [Online]. Available:
https : / / makeml . app / datasets / cars -
license-plates.

[42] Z. Liu, H. Mao, C.-Y. Wu, et al., “A convnet for the
2020s,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
Feichtenhofer, Christoph and Darrell, Trevor and Xie,
Saining, Jun. 2022, pp. 11 976–11 986.

[43] E. D. Cubuk, B. Zoph, et al., “Randaugment: Practical
automated data augmentation with a reduced search
space,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR)
Workshops, Shlens, Jonathon and Le, Quoc V., Jun.
2020.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

https://www.kamo.one
https://unity.com
https://www.unrealengine.com
https://www.octane.org
https://www.ogre3d.org
https://www.cycles-renderer.org
https://github.com/open-mmlab/mmclassification
https://github.com/open-mmlab/mmclassification
http://texturelib.com
http://texturelib.com
https://polyhaven.com
https://doschdesign.com
https://www.cgtrader.com/3d-models/car/luxury-car/silver-jeep-3d-model
https://www.cgtrader.com/3d-models/car/luxury-car/silver-jeep-3d-model
https://www.kba.de/DE/Statistik/Fahrzeuge/Neuzulassungen/Farbe/2021/2021_n_farbe_kurzbericht_pdf.pdf
https://www.kba.de/DE/Statistik/Fahrzeuge/Neuzulassungen/Farbe/2021/2021_n_farbe_kurzbericht_pdf.pdf
https://www.kba.de/DE/Statistik/Fahrzeuge/Neuzulassungen/Farbe/2021/2021_n_farbe_kurzbericht_pdf.pdf
https://www.kba.de/DE/Statistik/Fahrzeuge/Neuzulassungen/Farbe/2021/2021_n_farbe_kurzbericht_pdf.pdf
https://github.com/DeclanRussell/NvidiaAIDenoiser
https://github.com/DeclanRussell/NvidiaAIDenoiser
https://www.adac.de/rund-ums-fahrzeug/autokatalog/
https://www.adac.de/rund-ums-fahrzeug/autokatalog/
https://www.adac.de/rund-ums-fahrzeug/autokatalog/
https://arxiv.org/abs/2107.08430
https://arxiv.org/abs/2107.08430
https://makeml.app/datasets/cars-license-plates
https://makeml.app/datasets/cars-license-plates

	INTRODUCTION AND MOTIVATION
	STATE OF THE ART
	VMMR Datasets
	Synthetic Vehicle Datasets

	DATASET GENERATION
	Preliminary Examinations
	Environment Variation
	Vehicle Variation
	Model
	Car Paint
	Pose
	Lights

	Optical and Imaging Effects
	Structure and Annotations

	EVALUATION
	Training Setup
	Testing on CompCars

	CONCLUSION AND OUTLOOK

